@@ -216,11 +216,13 @@ class LinearRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
216216 }
217217
218218 test(" linear regression without intercept with L2 regularization" ) {
219- val trainer = (new LinearRegression ).setElasticNetParam(0.0 ).setRegParam(2.3 ).setFitIntercept(false )
219+ val trainer = (new LinearRegression ).setElasticNetParam(0.0 ).setRegParam(2.3 )
220+ .setFitIntercept(false )
220221 val model = trainer.fit(dataset)
221222
222223 /**
223- * weights <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3, intercept = FALSE))
224+ * weights <- coef(glmnet(features, label, family="gaussian", alpha = 0.0, lambda = 2.3,
225+ * intercept = FALSE))
224226 * > weights
225227 * 3 x 1 sparse Matrix of class "dgCMatrix"
226228 * s0
@@ -271,11 +273,13 @@ class LinearRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
271273 }
272274 }
273275 test(" linear regression without intercept with ElasticNet regularization" ) {
274- val trainer = (new LinearRegression ).setElasticNetParam(0.3 ).setRegParam(1.6 ).setFitIntercept(false )
276+ val trainer = (new LinearRegression ).setElasticNetParam(0.3 ).setRegParam(1.6 )
277+ .setFitIntercept(false )
275278 val model = trainer.fit(dataset)
276279
277280 /**
278- * weights <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6, intercept=FALSE))
281+ * weights <- coef(glmnet(features, label, family="gaussian", alpha = 0.3, lambda = 1.6,
282+ * intercept=FALSE))
279283 * > weights
280284 * 3 x 1 sparse Matrix of class "dgCMatrix"
281285 * s0
0 commit comments