Skip to content

Commit d85cd4e

Browse files
hhbyyhmengxr
authored andcommitted
[Spark-5406][MLlib] LocalLAPACK mode in RowMatrix.computeSVD should have much smaller upper bound
JIRA link: https://issues.apache.org/jira/browse/SPARK-5406 The code in breeze svd imposes the upper bound for LocalLAPACK in RowMatrix.computeSVD code from breeze svd (https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/linalg/functions/svd.scala) val workSize = ( 3 * scala.math.min(m, n) * scala.math.min(m, n) + scala.math.max(scala.math.max(m, n), 4 * scala.math.min(m, n) * scala.math.min(m, n) + 4 * scala.math.min(m, n)) ) val work = new Array[Double](workSize) As a result, 7 * n * n + 4 * n < Int.MaxValue at least (depends on JVM) In some worse cases, like n = 25000, work size will become positive again (80032704) and bring wired behavior. The PR is only the beginning, to support Genbase ( an important biological benchmark that would help promote Spark to genetic applications, http://www.paradigm4.com/wp-content/uploads/2014/06/Genomics-Benchmark-Technical-Report.pdf), which needs to compute svd for matrix up to 60K * 70K. I found many potential issues and would like to know if there's any plan undergoing that would expand the range of matrix computation based on Spark. Thanks. Author: Yuhao Yang <[email protected]> Closes #4200 from hhbyyh/rowMatrix and squashes the following commits: f7864d0 [Yuhao Yang] update auto logic for rowMatrix svd 23860e4 [Yuhao Yang] fix comment style e48a6e4 [Yuhao Yang] make latent svd computation constraint clear
1 parent ec10032 commit d85cd4e

File tree

1 file changed

+7
-1
lines changed
  • mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed

1 file changed

+7
-1
lines changed

mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -219,8 +219,12 @@ class RowMatrix(
219219

220220
val computeMode = mode match {
221221
case "auto" =>
222+
if(k > 5000) {
223+
logWarning(s"computing svd with k=$k and n=$n, please check necessity")
224+
}
225+
222226
// TODO: The conditions below are not fully tested.
223-
if (n < 100 || k > n / 2) {
227+
if (n < 100 || (k > n / 2 && n <= 15000)) {
224228
// If n is small or k is large compared with n, we better compute the Gramian matrix first
225229
// and then compute its eigenvalues locally, instead of making multiple passes.
226230
if (k < n / 3) {
@@ -245,6 +249,8 @@ class RowMatrix(
245249
val G = computeGramianMatrix().toBreeze.asInstanceOf[BDM[Double]]
246250
EigenValueDecomposition.symmetricEigs(v => G * v, n, k, tol, maxIter)
247251
case SVDMode.LocalLAPACK =>
252+
// breeze (v0.10) svd latent constraint, 7 * n * n + 4 * n < Int.MaxValue
253+
require(n < 17515, s"$n exceeds the breeze svd capability")
248254
val G = computeGramianMatrix().toBreeze.asInstanceOf[BDM[Double]]
249255
val brzSvd.SVD(uFull: BDM[Double], sigmaSquaresFull: BDV[Double], _) = brzSvd(G)
250256
(sigmaSquaresFull, uFull)

0 commit comments

Comments
 (0)