@@ -96,14 +96,16 @@ class LogisticRegressionModel(LinearClassificationModel):
9696 :param weights:
9797 Weights computed for every feature.
9898 :param intercept:
99- Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial
100- Logistic Regression, the intercepts will not be a single value, so the intercepts will be part
101- of the weights.)
99+ Intercept computed for this model. (Only used in Binary Logistic
100+ Regression. In Multinomial Logistic Regression, the intercepts will
101+ not bea single value, so the intercepts will be part of the
102+ weights.)
102103 :param numFeatures:
103104 The dimension of the features.
104105 :param numClasses:
105- The number of possible outcomes for k classes classification problem in Multinomial Logistic
106- Regression. By default, it is binary logistic regression so numClasses will be set to 2.
106+ The number of possible outcomes for k classes classification problem
107+ in Multinomial Logistic Regression. By default, it is binary
108+ logistic regression so numClasses will be set to 2.
107109
108110 >>> data = [
109111 ... LabeledPoint(0.0, [0.0, 1.0]),
@@ -297,11 +299,13 @@ def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
297299 - None for no regularization
298300 (default: "l2")
299301 :param intercept:
300- Boolean parameter which indicates the use or not of the augmented representation for
301- training data (i.e., whether bias features are activated or not).
302+ Boolean parameter which indicates the use or not of the
303+ augmented representation for training data (i.e., whether bias
304+ features are activated or not).
302305 (default: False)
303306 :param validateData:
304- Boolean parameter which indicates if the algorithm should validate data before training.
307+ Boolean parameter which indicates if the algorithm should
308+ validate data before training.
305309 (default: True)
306310 :param convergenceTol:
307311 A condition which decides iteration termination.
@@ -345,8 +349,9 @@ def train(cls, data, iterations=100, initialWeights=None, regParam=0.01, regType
345349 - None for no regularization
346350 (default: "l2")
347351 :param intercept:
348- Boolean parameter which indicates the use or not of the augmented representation for
349- training data (i.e., whether bias features are activated or not).
352+ Boolean parameter which indicates the use or not of the
353+ augmented representation for training data (i.e., whether bias
354+ features are activated or not).
350355 (default: False)
351356 :param corrections:
352357 The number of corrections used in the LBFGS update.
@@ -355,10 +360,12 @@ def train(cls, data, iterations=100, initialWeights=None, regParam=0.01, regType
355360 The convergence tolerance of iterations for L-BFGS.
356361 (default: 1e-4)
357362 :param validateData:
358- Boolean parameter which indicates if the algorithm should validate data before training.
363+ Boolean parameter which indicates if the algorithm should
364+ validate data before training.
359365 (default: True)
360366 :param numClasses:
361- The number of classes (i.e., outcomes) a label can take in Multinomial Logistic Regression.
367+ The number of classes (i.e., outcomes) a label can take in
368+ Multinomial Logistic Regression.
362369 (default: 2)
363370
364371 >>> data = [
@@ -522,11 +529,13 @@ def train(cls, data, iterations=100, step=1.0, regParam=0.01,
522529 - None for no regularization
523530 (default: "l2")
524531 :param intercept:
525- Boolean parameter which indicates the use or not of the augmented representation for
526- training data (i.e. whether bias features are activated or not).
532+ Boolean parameter which indicates the use or not of the
533+ augmented representation for training data (i.e. whether bias
534+ features are activated or not).
527535 (default: False)
528536 :param validateData:
529- Boolean parameter which indicates if the algorithm should validate data before training.
537+ Boolean parameter which indicates if the algorithm should
538+ validate data before training.
530539 (default: True)
531540 :param convergenceTol:
532541 A condition which decides iteration termination.
@@ -551,7 +560,8 @@ class NaiveBayesModel(Saveable, Loader):
551560 :param pi:
552561 Log of class priors, whose dimension is C, number of labels.
553562 :param theta:
554- Log of class conditional probabilities, whose dimension is C-by-D, where D is number of features.
563+ Log of class conditional probabilities, whose dimension is C-by-D,
564+ where D is number of features.
555565
556566 >>> data = [
557567 ... LabeledPoint(0.0, [0.0, 0.0]),
@@ -666,9 +676,9 @@ def train(cls, data, lambda_=1.0):
666676@inherit_doc
667677class StreamingLogisticRegressionWithSGD (StreamingLinearAlgorithm ):
668678 """
669- Train or predict a logistic regression model on streaming data. Training uses
670- Stochastic Gradient Descent to update the model based on each new batch of
671- incoming data from a DStream.
679+ Train or predict a logistic regression model on streaming data.
680+ Training uses Stochastic Gradient Descent to update the model based on
681+ each new batch of incoming data from a DStream.
672682
673683 Each batch of data is assumed to be an RDD of LabeledPoints.
674684 The number of data points per batch can vary, but the number
0 commit comments