|
| 1 | +--- |
| 2 | +layout: global |
| 3 | +title: Data sources |
| 4 | +displayTitle: Data sources |
| 5 | +--- |
| 6 | + |
| 7 | +In this section, we introduce how to use data source in ML to load data. |
| 8 | +Beside some general data sources such as Parquet, CSV, JSON and JDBC, we also provide some specific data sources for ML. |
| 9 | + |
| 10 | +**Table of Contents** |
| 11 | + |
| 12 | +* This will become a table of contents (this text will be scraped). |
| 13 | +{:toc} |
| 14 | + |
| 15 | +## Image data source |
| 16 | + |
| 17 | +This image data source is used to load image files from a directory, it can load compressed image (jpeg, png, etc.) into raw image representation via `ImageIO` in Java library. |
| 18 | +The loaded DataFrame has one `StructType` column: "image", containing image data stored as image schema. |
| 19 | +The schema of the `image` column is: |
| 20 | + - origin: `StringType` (represents the file path of the image) |
| 21 | + - height: `IntegerType` (height of the image) |
| 22 | + - width: `IntegerType` (width of the image) |
| 23 | + - nChannels: `IntegerType` (number of image channels) |
| 24 | + - mode: `IntegerType` (OpenCV-compatible type) |
| 25 | + - data: `BinaryType` (Image bytes in OpenCV-compatible order: row-wise BGR in most cases) |
| 26 | + |
| 27 | + |
| 28 | +<div class="codetabs"> |
| 29 | +<div data-lang="scala" markdown="1"> |
| 30 | +[`ImageDataSource`](api/scala/index.html#org.apache.spark.ml.source.image.ImageDataSource) |
| 31 | +implements a Spark SQL data source API for loading image data as a DataFrame. |
| 32 | + |
| 33 | +{% highlight scala %} |
| 34 | +scala> val df = spark.read.format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens") |
| 35 | +df: org.apache.spark.sql.DataFrame = [image: struct<origin: string, height: int ... 4 more fields>] |
| 36 | + |
| 37 | +scala> df.select("image.origin", "image.width", "image.height").show(truncate=false) |
| 38 | ++-----------------------------------------------------------------------+-----+------+ |
| 39 | +|origin |width|height| |
| 40 | ++-----------------------------------------------------------------------+-----+------+ |
| 41 | +|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |
| 42 | +|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |
| 43 | +|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |
| 44 | +|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | |
| 45 | ++-----------------------------------------------------------------------+-----+------+ |
| 46 | +{% endhighlight %} |
| 47 | +</div> |
| 48 | + |
| 49 | +<div data-lang="java" markdown="1"> |
| 50 | +[`ImageDataSource`](api/java/org/apache/spark/ml/source/image/ImageDataSource.html) |
| 51 | +implements Spark SQL data source API for loading image data as DataFrame. |
| 52 | + |
| 53 | +{% highlight java %} |
| 54 | +Dataset<Row> imagesDF = spark.read().format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens"); |
| 55 | +imageDF.select("image.origin", "image.width", "image.height").show(false); |
| 56 | +/* |
| 57 | +Will output: |
| 58 | ++-----------------------------------------------------------------------+-----+------+ |
| 59 | +|origin |width|height| |
| 60 | ++-----------------------------------------------------------------------+-----+------+ |
| 61 | +|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |
| 62 | +|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |
| 63 | +|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |
| 64 | +|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | |
| 65 | ++-----------------------------------------------------------------------+-----+------+ |
| 66 | +*/ |
| 67 | +{% endhighlight %} |
| 68 | +</div> |
| 69 | + |
| 70 | +<div data-lang="python" markdown="1"> |
| 71 | +In PySpark we provide Spark SQL data source API for loading image data as DataFrame. |
| 72 | + |
| 73 | +{% highlight python %} |
| 74 | +>>> df = spark.read.format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens") |
| 75 | +>>> df.select("image.origin", "image.width", "image.height").show(truncate=False) |
| 76 | ++-----------------------------------------------------------------------+-----+------+ |
| 77 | +|origin |width|height| |
| 78 | ++-----------------------------------------------------------------------+-----+------+ |
| 79 | +|file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |
| 80 | +|file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |
| 81 | +|file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |
| 82 | +|file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | |
| 83 | ++-----------------------------------------------------------------------+-----+------+ |
| 84 | +{% endhighlight %} |
| 85 | +</div> |
| 86 | + |
| 87 | +<div data-lang="r" markdown="1"> |
| 88 | +In SparkR we provide Spark SQL data source API for loading image data as DataFrame. |
| 89 | + |
| 90 | +{% highlight r %} |
| 91 | +> df = read.df("data/mllib/images/origin/kittens", "image") |
| 92 | +> head(select(df, df$image.origin, df$image.width, df$image.height)) |
| 93 | +
|
| 94 | +1 file:///spark/data/mllib/images/origin/kittens/54893.jpg |
| 95 | +2 file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |
| 96 | +3 file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |
| 97 | +4 file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |
| 98 | + width height |
| 99 | +1 300 311 |
| 100 | +2 199 313 |
| 101 | +3 300 200 |
| 102 | +4 300 296 |
| 103 | + |
| 104 | +{% endhighlight %} |
| 105 | +</div> |
| 106 | + |
| 107 | + |
| 108 | +</div> |
0 commit comments