|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.sql.execution.adaptive |
| 19 | + |
| 20 | +import org.apache.spark.sql.QueryTest |
| 21 | +import org.apache.spark.sql.functions._ |
| 22 | +import org.apache.spark.sql.internal.SQLConf |
| 23 | +import org.apache.spark.sql.test.{SharedSQLContext, SQLTestUtils} |
| 24 | + |
| 25 | +class QueryFragmentSuite extends QueryTest with SQLTestUtils with SharedSQLContext { |
| 26 | + import testImplicits._ |
| 27 | + |
| 28 | + setupTestData() |
| 29 | + |
| 30 | + test("adaptive optimization: transform sort merge join to broadcast join for inner join") { |
| 31 | + withSQLConf(SQLConf.ADAPTIVE_EXECUTION2_ENABLED.key -> "true", |
| 32 | + SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "100000") { |
| 33 | + val numInputPartitions: Int = 2 |
| 34 | + val df1 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 35 | + .selectExpr("id % 50 as key1", "id as value1") |
| 36 | + .groupBy("key1") |
| 37 | + .agg($"key1", count("value1") as "cnt1") |
| 38 | + val df2 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 39 | + .selectExpr("id % 50 as key2", "id as value2") |
| 40 | + .groupBy("key2") |
| 41 | + .agg($"key2", count("value2") as "cnt2") |
| 42 | + val join1 = df1.join(df2, col("key1") === col("key2")) |
| 43 | + .select(col("key1"), col("cnt1"), col("cnt2")) |
| 44 | + checkAnswer(join1, |
| 45 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "2000 as cnt2").collect()) |
| 46 | + |
| 47 | + val df3 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 48 | + .selectExpr("id as key3", "id as value3") |
| 49 | + .groupBy("key3") |
| 50 | + .agg($"key3", count("value3") as "cnt3") |
| 51 | + val join2 = df3.join(df1, col("key3") === col("key1")) |
| 52 | + .select(col("key1"), col("cnt1"), col("cnt3")) |
| 53 | + checkAnswer(join2, |
| 54 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "1 as cnt3").collect()) |
| 55 | + } |
| 56 | + } |
| 57 | + |
| 58 | + test("adaptive optimization: transform sort merge join to broadcast join for outer join") { |
| 59 | + withSQLConf(SQLConf.ADAPTIVE_EXECUTION2_ENABLED.key -> "true", |
| 60 | + SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "100000") { |
| 61 | + val numInputPartitions: Int = 2 |
| 62 | + val df1 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 63 | + .selectExpr("id % 50 as key1", "id as value1") |
| 64 | + .groupBy("key1") |
| 65 | + .agg($"key1", count("value1") as "cnt1") |
| 66 | + val df2 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 67 | + .selectExpr("id % 50 as key2", "id as value2") |
| 68 | + .groupBy("key2") |
| 69 | + .agg($"key2", count("value2") as "cnt2") |
| 70 | + val join1 = df1.join(df2, col("key1") === col("key2"), "left_outer") |
| 71 | + .select(col("key1"), col("cnt1"), col("cnt2")) |
| 72 | + checkAnswer(join1, |
| 73 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "2000 as cnt2").collect()) |
| 74 | + |
| 75 | + val join2 = df1.join(df2, col("key1") === col("key2"), "right_outer") |
| 76 | + .select(col("key1"), col("cnt1"), col("cnt2")) |
| 77 | + checkAnswer(join2, |
| 78 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "2000 as cnt2").collect()) |
| 79 | + |
| 80 | + val df3 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 81 | + .selectExpr("id as key3", "id as value3") |
| 82 | + .groupBy("key3") |
| 83 | + .agg($"key3", count("value3") as "cnt3") |
| 84 | + val join3 = df3.join(df1, col("key3") === col("key1"), "left_outer") |
| 85 | + .select(col("key1"), col("cnt1"), col("cnt3")) |
| 86 | + checkAnswer(join3, |
| 87 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "1 as cnt3") |
| 88 | + .union(sqlContext.range(0, 99950).selectExpr("null as key", "null as cnt1", "1 as cnt3")) |
| 89 | + .collect()) |
| 90 | + |
| 91 | + val join4 = df3.join(df1, col("key3") === col("key1"), "right_outer") |
| 92 | + .select(col("key1"), col("cnt1"), col("cnt3")) |
| 93 | + checkAnswer(join4, |
| 94 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1", "1 as cnt3").collect()) |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + test("adaptive optimization: transform sort merge join to broadcast join for left semi join") { |
| 99 | + withSQLConf(SQLConf.ADAPTIVE_EXECUTION2_ENABLED.key -> "true", |
| 100 | + SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "100000") { |
| 101 | + val numInputPartitions: Int = 2 |
| 102 | + val df1 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 103 | + .selectExpr("id % 50 as key1", "id as value1") |
| 104 | + .groupBy("key1") |
| 105 | + .agg($"key1", count("value1") as "cnt1") |
| 106 | + val df2 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 107 | + .selectExpr("id % 50 as key2", "id as value2") |
| 108 | + .groupBy("key2") |
| 109 | + .agg($"key2", count("value2") as "cnt2") |
| 110 | + val join1 = df1.join(df2, col("key1") === col("key2"), "leftsemi") |
| 111 | + .select(col("key1"), col("cnt1")) |
| 112 | + |
| 113 | + checkAnswer(join1, |
| 114 | + sqlContext.range(0, 50).selectExpr("id as key", "2000 as cnt1").collect()) |
| 115 | + |
| 116 | + val df3 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 117 | + .selectExpr("id as key3", "id as value3") |
| 118 | + .groupBy("key3") |
| 119 | + .agg($"key3", count("value3") as "cnt3") |
| 120 | + val join2 = df3.join(df1, col("key3") === col("key1"), "leftsemi") |
| 121 | + .select(col("key3"), col("cnt3")) |
| 122 | + |
| 123 | + checkAnswer(join2, |
| 124 | + sqlContext.range(0, 50).selectExpr("id as key3", "1 as cnt3").collect()) |
| 125 | + } |
| 126 | + } |
| 127 | + |
| 128 | + test("adaptive optimization: transform sort merge join to broadcast join for left anti join") { |
| 129 | + withSQLConf(SQLConf.ADAPTIVE_EXECUTION2_ENABLED.key -> "true", |
| 130 | + SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "100000") { |
| 131 | + val numInputPartitions: Int = 2 |
| 132 | + val df1 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 133 | + .selectExpr("id % 100 as key1", "id as value1") |
| 134 | + .groupBy("key1") |
| 135 | + .agg($"key1", count("value1") as "cnt1") |
| 136 | + val df2 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 137 | + .selectExpr("id % 50 as key2", "id as value2") |
| 138 | + .groupBy("key2") |
| 139 | + .agg($"key2", count("value2") as "cnt2") |
| 140 | + val join1 = df1.join(df2, col("key1") === col("key2"), "leftanti") |
| 141 | + .select(col("key1"), col("cnt1")) |
| 142 | + checkAnswer(join1, |
| 143 | + sqlContext.range(50, 100).selectExpr("id as key", "1000 as cnt1").collect()) |
| 144 | + |
| 145 | + val df3 = sqlContext.range(0, 100000, 1, numInputPartitions) |
| 146 | + .selectExpr("id as key3", "id as value3") |
| 147 | + .groupBy("key3") |
| 148 | + .agg($"key3", count("value3") as "cnt3") |
| 149 | + val join2 = df3.join(df1, col("key3") === col("key1"), "leftanti") |
| 150 | + .select(col("key3"), col("cnt3")) |
| 151 | + |
| 152 | + checkAnswer(join2, |
| 153 | + sqlContext.range(100, 100000).selectExpr("id as key3", "1 as cnt3").collect()) |
| 154 | + } |
| 155 | + } |
| 156 | + |
| 157 | + test("adaptive optimization: transform sort merge join to broadcast join for existence join") { |
| 158 | + withSQLConf(SQLConf.ADAPTIVE_EXECUTION2_ENABLED.key -> "true", |
| 159 | + SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "100000") { |
| 160 | + val numInputPartitions: Int = 2 |
| 161 | + sqlContext.range(0, 100000, 1, numInputPartitions) |
| 162 | + .selectExpr("id % 50 as key1", "id as value1") |
| 163 | + .registerTempTable("testData") |
| 164 | + sqlContext.range(0, 100000, 1, numInputPartitions) |
| 165 | + .selectExpr("id % 50 as key2", "id as value2") |
| 166 | + .registerTempTable("testData2") |
| 167 | + val join1 = sqlContext.sql("select key1, cnt1 from " + |
| 168 | + "(select key1, count(value1) as cnt1 from testData group by key1) t1 " + |
| 169 | + "where key1 in (select distinct key2 from testData2)") |
| 170 | + checkAnswer(join1, |
| 171 | + sqlContext.range(0, 50).selectExpr("id as key1", "2000 as cnt1").collect()) |
| 172 | + sqlContext.range(0, 100000, 1, numInputPartitions) |
| 173 | + .selectExpr("id as key3", "id as value3") |
| 174 | + .registerTempTable("testData3") |
| 175 | + val join2 = sqlContext.sql("select key3, value3 from testData3 " + |
| 176 | + "where key3 in (select distinct key2 from testData2)") |
| 177 | + checkAnswer(join2, |
| 178 | + sqlContext.range(0, 50).selectExpr("id as key3", "id as value3").collect()) |
| 179 | + } |
| 180 | + } |
| 181 | +} |
0 commit comments