You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[SPARK-18937][SQL] Timezone support in CSV/JSON parsing
## What changes were proposed in this pull request?
This is a follow-up pr of #16308.
This pr enables timezone support in CSV/JSON parsing.
We should introduce `timeZone` option for CSV/JSON datasources (the default value of the option is session local timezone).
The datasources should use the `timeZone` option to format/parse to write/read timestamp values.
Notice that while reading, if the timestampFormat has the timezone info, the timezone will not be used because we should respect the timezone in the values.
For example, if you have timestamp `"2016-01-01 00:00:00"` in `GMT`, the values written with the default timezone option, which is `"GMT"` because session local timezone is `"GMT"` here, are:
```scala
scala> spark.conf.set("spark.sql.session.timeZone", "GMT")
scala> val df = Seq(new java.sql.Timestamp(1451606400000L)).toDF("ts")
df: org.apache.spark.sql.DataFrame = [ts: timestamp]
scala> df.show()
+-------------------+
|ts |
+-------------------+
|2016-01-01 00:00:00|
+-------------------+
scala> df.write.json("/path/to/gmtjson")
```
```sh
$ cat /path/to/gmtjson/part-*
{"ts":"2016-01-01T00:00:00.000Z"}
```
whereas setting the option to `"PST"`, they are:
```scala
scala> df.write.option("timeZone", "PST").json("/path/to/pstjson")
```
```sh
$ cat /path/to/pstjson/part-*
{"ts":"2015-12-31T16:00:00.000-08:00"}
```
We can properly read these files even if the timezone option is wrong because the timestamp values have timezone info:
```scala
scala> val schema = new StructType().add("ts", TimestampType)
schema: org.apache.spark.sql.types.StructType = StructType(StructField(ts,TimestampType,true))
scala> spark.read.schema(schema).json("/path/to/gmtjson").show()
+-------------------+
|ts |
+-------------------+
|2016-01-01 00:00:00|
+-------------------+
scala> spark.read.schema(schema).option("timeZone", "PST").json("/path/to/gmtjson").show()
+-------------------+
|ts |
+-------------------+
|2016-01-01 00:00:00|
+-------------------+
```
And even if `timezoneFormat` doesn't contain timezone info, we can properly read the values with setting correct timezone option:
```scala
scala> df.write.option("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss").option("timeZone", "JST").json("/path/to/jstjson")
```
```sh
$ cat /path/to/jstjson/part-*
{"ts":"2016-01-01T09:00:00"}
```
```scala
// wrong result
scala> spark.read.schema(schema).option("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss").json("/path/to/jstjson").show()
+-------------------+
|ts |
+-------------------+
|2016-01-01 09:00:00|
+-------------------+
// correct result
scala> spark.read.schema(schema).option("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss").option("timeZone", "JST").json("/path/to/jstjson").show()
+-------------------+
|ts |
+-------------------+
|2016-01-01 00:00:00|
+-------------------+
```
This pr also makes `JsonToStruct` and `StructToJson` `TimeZoneAwareExpression` to be able to evaluate values with timezone option.
## How was this patch tested?
Existing tests and added some tests.
Author: Takuya UESHIN <[email protected]>
Closes#16750 from ueshin/issues/SPARK-18937.
0 commit comments