Skip to content

Commit 5b8d9d0

Browse files
committed
Update annotations.
1 parent 20f8982 commit 5b8d9d0

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -351,7 +351,7 @@ class GaussianMixture @Since("2.0.0") (
351351
val shouldDistributeGaussians = GaussianMixture.shouldDistributeGaussians(
352352
numClusters, numFeatures)
353353

354-
// TODO: Support users supplied initial GMM.
354+
// TODO: SPARK-15785 Support users supplied initial GMM.
355355
val (weights, gaussians) = initRandom(instances, numClusters, numFeatures)
356356

357357
var logLikelihood = Double.MinValue
@@ -429,17 +429,17 @@ class GaussianMixture @Since("2.0.0") (
429429
}
430430

431431
/**
432-
* Initialize weights and corresponding gaussians at random.
432+
* Initialize weights and corresponding gaussian distributions at random.
433433
*
434434
* We start with uniform weights, a random mean from the data, and diagonal covariance matrices
435435
* using component variances derived from the samples.
436436
*
437-
* @param instances The instances of training data.
437+
* @param instances The training instances.
438438
* @param numClusters The number of clusters.
439-
* @param numFeatures The number of features in training data.
440-
* @return The initialized weights and corresponding gaussians. Note the covariance matrix of
441-
* multivariate gaussian distribution is symmetric and we only save the upper triangular
442-
* part as a dense vector.
439+
* @param numFeatures The number of features of training instance.
440+
* @return The initialized weights and corresponding gaussian distributions. Note the
441+
* covariance matrix of multivariate gaussian distribution is symmetric and
442+
* we only save the upper triangular part as a dense vector.
443443
*/
444444
private def initRandom(
445445
instances: RDD[Vector],

0 commit comments

Comments
 (0)