@@ -351,7 +351,7 @@ class GaussianMixture @Since("2.0.0") (
351351 val shouldDistributeGaussians = GaussianMixture .shouldDistributeGaussians(
352352 numClusters, numFeatures)
353353
354- // TODO: Support users supplied initial GMM.
354+ // TODO: SPARK-15785 Support users supplied initial GMM.
355355 val (weights, gaussians) = initRandom(instances, numClusters, numFeatures)
356356
357357 var logLikelihood = Double .MinValue
@@ -429,17 +429,17 @@ class GaussianMixture @Since("2.0.0") (
429429 }
430430
431431 /**
432- * Initialize weights and corresponding gaussians at random.
432+ * Initialize weights and corresponding gaussian distributions at random.
433433 *
434434 * We start with uniform weights, a random mean from the data, and diagonal covariance matrices
435435 * using component variances derived from the samples.
436436 *
437- * @param instances The instances of training data .
437+ * @param instances The training instances .
438438 * @param numClusters The number of clusters.
439- * @param numFeatures The number of features in training data .
440- * @return The initialized weights and corresponding gaussians . Note the covariance matrix of
441- * multivariate gaussian distribution is symmetric and we only save the upper triangular
442- * part as a dense vector.
439+ * @param numFeatures The number of features of training instance .
440+ * @return The initialized weights and corresponding gaussian distributions . Note the
441+ * covariance matrix of multivariate gaussian distribution is symmetric and
442+ * we only save the upper triangular part as a dense vector.
443443 */
444444 private def initRandom (
445445 instances : RDD [Vector ],
0 commit comments