|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.ml.feature |
| 19 | + |
| 20 | +import scala.collection.mutable.ArrayBuilder |
| 21 | + |
| 22 | +import org.apache.spark.SparkException |
| 23 | +import org.apache.spark.annotation.Experimental |
| 24 | +import org.apache.spark.ml.attribute._ |
| 25 | +import org.apache.spark.ml.param._ |
| 26 | +import org.apache.spark.ml.param.shared._ |
| 27 | +import org.apache.spark.ml.util.Identifiable |
| 28 | +import org.apache.spark.ml.Transformer |
| 29 | +import org.apache.spark.mllib.linalg.{Vector, VectorUDT, Vectors} |
| 30 | +import org.apache.spark.sql.{DataFrame, Row} |
| 31 | +import org.apache.spark.sql.functions._ |
| 32 | +import org.apache.spark.sql.types._ |
| 33 | + |
| 34 | +/** |
| 35 | + * :: Experimental :: |
| 36 | + * Implements the feature interaction transform. This transformer takes in Double and Vector type |
| 37 | + * columns and outputs a flattened vector of their feature interactions. To handle interaction, |
| 38 | + * we first one-hot encode any nominal features. Then, a vector of the feature cross-products is |
| 39 | + * produced. |
| 40 | + * |
| 41 | + * For example, given the input feature values `Double(2)` and `Vector(3, 4)`, the output would be |
| 42 | + * `Vector(6, 8)` if all input features were numeric. If the first feature was instead nominal |
| 43 | + * with four categories, the output would then be `Vector(0, 0, 0, 0, 3, 4, 0, 0)`. |
| 44 | + */ |
| 45 | +@Experimental |
| 46 | +class Interaction(override val uid: String) extends Transformer |
| 47 | + with HasInputCols with HasOutputCol { |
| 48 | + |
| 49 | + def this() = this(Identifiable.randomUID("interaction")) |
| 50 | + |
| 51 | + /** @group setParam */ |
| 52 | + def setInputCols(values: Array[String]): this.type = set(inputCols, values) |
| 53 | + |
| 54 | + /** @group setParam */ |
| 55 | + def setOutputCol(value: String): this.type = set(outputCol, value) |
| 56 | + |
| 57 | + // optimistic schema; does not contain any ML attributes |
| 58 | + override def transformSchema(schema: StructType): StructType = { |
| 59 | + validateParams() |
| 60 | + StructType(schema.fields :+ StructField($(outputCol), new VectorUDT, false)) |
| 61 | + } |
| 62 | + |
| 63 | + override def transform(dataset: DataFrame): DataFrame = { |
| 64 | + validateParams() |
| 65 | + val inputFeatures = $(inputCols).map(c => dataset.schema(c)) |
| 66 | + val featureEncoders = getFeatureEncoders(inputFeatures) |
| 67 | + val featureAttrs = getFeatureAttrs(inputFeatures) |
| 68 | + |
| 69 | + def interactFunc = udf { row: Row => |
| 70 | + var indices = ArrayBuilder.make[Int] |
| 71 | + var values = ArrayBuilder.make[Double] |
| 72 | + var size = 1 |
| 73 | + indices += 0 |
| 74 | + values += 1.0 |
| 75 | + var featureIndex = row.length - 1 |
| 76 | + while (featureIndex >= 0) { |
| 77 | + val prevIndices = indices.result() |
| 78 | + val prevValues = values.result() |
| 79 | + val prevSize = size |
| 80 | + val currentEncoder = featureEncoders(featureIndex) |
| 81 | + indices = ArrayBuilder.make[Int] |
| 82 | + values = ArrayBuilder.make[Double] |
| 83 | + size *= currentEncoder.outputSize |
| 84 | + currentEncoder.foreachNonzeroOutput(row(featureIndex), (i, a) => { |
| 85 | + var j = 0 |
| 86 | + while (j < prevIndices.length) { |
| 87 | + indices += prevIndices(j) + i * prevSize |
| 88 | + values += prevValues(j) * a |
| 89 | + j += 1 |
| 90 | + } |
| 91 | + }) |
| 92 | + featureIndex -= 1 |
| 93 | + } |
| 94 | + Vectors.sparse(size, indices.result(), values.result()).compressed |
| 95 | + } |
| 96 | + |
| 97 | + val featureCols = inputFeatures.map { f => |
| 98 | + f.dataType match { |
| 99 | + case DoubleType => dataset(f.name) |
| 100 | + case _: VectorUDT => dataset(f.name) |
| 101 | + case _: NumericType | BooleanType => dataset(f.name).cast(DoubleType) |
| 102 | + } |
| 103 | + } |
| 104 | + dataset.select( |
| 105 | + col("*"), |
| 106 | + interactFunc(struct(featureCols: _*)).as($(outputCol), featureAttrs.toMetadata())) |
| 107 | + } |
| 108 | + |
| 109 | + /** |
| 110 | + * Creates a feature encoder for each input column, which supports efficient iteration over |
| 111 | + * one-hot encoded feature values. See also the class-level comment of [[FeatureEncoder]]. |
| 112 | + * |
| 113 | + * @param features The input feature columns to create encoders for. |
| 114 | + */ |
| 115 | + private def getFeatureEncoders(features: Seq[StructField]): Array[FeatureEncoder] = { |
| 116 | + def getNumFeatures(attr: Attribute): Int = { |
| 117 | + attr match { |
| 118 | + case nominal: NominalAttribute => |
| 119 | + math.max(1, nominal.getNumValues.getOrElse( |
| 120 | + throw new SparkException("Nominal features must have attr numValues defined."))) |
| 121 | + case _ => |
| 122 | + 1 // numeric feature |
| 123 | + } |
| 124 | + } |
| 125 | + features.map { f => |
| 126 | + val numFeatures = f.dataType match { |
| 127 | + case _: NumericType | BooleanType => |
| 128 | + Array(getNumFeatures(Attribute.fromStructField(f))) |
| 129 | + case _: VectorUDT => |
| 130 | + val attrs = AttributeGroup.fromStructField(f).attributes.getOrElse( |
| 131 | + throw new SparkException("Vector attributes must be defined for interaction.")) |
| 132 | + attrs.map(getNumFeatures).toArray |
| 133 | + } |
| 134 | + new FeatureEncoder(numFeatures) |
| 135 | + }.toArray |
| 136 | + } |
| 137 | + |
| 138 | + /** |
| 139 | + * Generates ML attributes for the output vector of all feature interactions. We make a best |
| 140 | + * effort to generate reasonable names for output features, based on the concatenation of the |
| 141 | + * interacting feature names and values delimited with `_`. When no feature name is specified, |
| 142 | + * we fall back to using the feature index (e.g. `foo:bar_2_0` may indicate an interaction |
| 143 | + * between the numeric `foo` feature and a nominal third feature from column `bar`. |
| 144 | + * |
| 145 | + * @param features The input feature columns to the Interaction transformer. |
| 146 | + */ |
| 147 | + private def getFeatureAttrs(features: Seq[StructField]): AttributeGroup = { |
| 148 | + var featureAttrs: Seq[Attribute] = Nil |
| 149 | + features.reverse.foreach { f => |
| 150 | + val encodedAttrs = f.dataType match { |
| 151 | + case _: NumericType | BooleanType => |
| 152 | + val attr = Attribute.fromStructField(f) |
| 153 | + encodedFeatureAttrs(Seq(attr), None) |
| 154 | + case _: VectorUDT => |
| 155 | + val group = AttributeGroup.fromStructField(f) |
| 156 | + encodedFeatureAttrs(group.attributes.get, Some(group.name)) |
| 157 | + } |
| 158 | + if (featureAttrs.isEmpty) { |
| 159 | + featureAttrs = encodedAttrs |
| 160 | + } else { |
| 161 | + featureAttrs = encodedAttrs.flatMap { head => |
| 162 | + featureAttrs.map { tail => |
| 163 | + NumericAttribute.defaultAttr.withName(head.name.get + ":" + tail.name.get) |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + } |
| 168 | + new AttributeGroup($(outputCol), featureAttrs.toArray) |
| 169 | + } |
| 170 | + |
| 171 | + /** |
| 172 | + * Generates the output ML attributes for a single input feature. Each output feature name has |
| 173 | + * up to three parts: the group name, feature name, and category name (for nominal features), |
| 174 | + * each separated by an underscore. |
| 175 | + * |
| 176 | + * @param inputAttrs The attributes of the input feature. |
| 177 | + * @param groupName Optional name of the input feature group (for Vector type features). |
| 178 | + */ |
| 179 | + private def encodedFeatureAttrs( |
| 180 | + inputAttrs: Seq[Attribute], |
| 181 | + groupName: Option[String]): Seq[Attribute] = { |
| 182 | + |
| 183 | + def format( |
| 184 | + index: Int, |
| 185 | + attrName: Option[String], |
| 186 | + categoryName: Option[String]): String = { |
| 187 | + val parts = Seq(groupName, Some(attrName.getOrElse(index.toString)), categoryName) |
| 188 | + parts.flatten.mkString("_") |
| 189 | + } |
| 190 | + |
| 191 | + inputAttrs.zipWithIndex.flatMap { |
| 192 | + case (nominal: NominalAttribute, i) => |
| 193 | + if (nominal.values.isDefined) { |
| 194 | + nominal.values.get.map( |
| 195 | + v => BinaryAttribute.defaultAttr.withName(format(i, nominal.name, Some(v)))) |
| 196 | + } else { |
| 197 | + Array.tabulate(nominal.getNumValues.get)( |
| 198 | + j => BinaryAttribute.defaultAttr.withName(format(i, nominal.name, Some(j.toString)))) |
| 199 | + } |
| 200 | + case (a: Attribute, i) => |
| 201 | + Seq(NumericAttribute.defaultAttr.withName(format(i, a.name, None))) |
| 202 | + } |
| 203 | + } |
| 204 | + |
| 205 | + override def copy(extra: ParamMap): Interaction = defaultCopy(extra) |
| 206 | + |
| 207 | + override def validateParams(): Unit = { |
| 208 | + require(get(inputCols).isDefined, "Input cols must be defined first.") |
| 209 | + require(get(outputCol).isDefined, "Output col must be defined first.") |
| 210 | + require($(inputCols).length > 0, "Input cols must have non-zero length.") |
| 211 | + require($(inputCols).distinct.length == $(inputCols).length, "Input cols must be distinct.") |
| 212 | + } |
| 213 | +} |
| 214 | + |
| 215 | +/** |
| 216 | + * This class performs on-the-fly one-hot encoding of features as you iterate over them. To |
| 217 | + * indicate which input features should be one-hot encoded, an array of the feature counts |
| 218 | + * must be passed in ahead of time. |
| 219 | + * |
| 220 | + * @param numFeatures Array of feature counts for each input feature. For nominal features this |
| 221 | + * count is equal to the number of categories. For numeric features the count |
| 222 | + * should be set to 1. |
| 223 | + */ |
| 224 | +private[ml] class FeatureEncoder(numFeatures: Array[Int]) { |
| 225 | + assert(numFeatures.forall(_ > 0), "Features counts must all be positive.") |
| 226 | + |
| 227 | + /** The size of the output vector. */ |
| 228 | + val outputSize = numFeatures.sum |
| 229 | + |
| 230 | + /** Precomputed offsets for the location of each output feature. */ |
| 231 | + private val outputOffsets = { |
| 232 | + val arr = new Array[Int](numFeatures.length) |
| 233 | + var i = 1 |
| 234 | + while (i < arr.length) { |
| 235 | + arr(i) = arr(i - 1) + numFeatures(i - 1) |
| 236 | + i += 1 |
| 237 | + } |
| 238 | + arr |
| 239 | + } |
| 240 | + |
| 241 | + /** |
| 242 | + * Given an input row of features, invokes the specific function for every non-zero output. |
| 243 | + * |
| 244 | + * @param value The row value to encode, either a Double or Vector. |
| 245 | + * @param f The callback to invoke on each non-zero (index, value) output pair. |
| 246 | + */ |
| 247 | + def foreachNonzeroOutput(value: Any, f: (Int, Double) => Unit): Unit = value match { |
| 248 | + case d: Double => |
| 249 | + assert(numFeatures.length == 1, "DoubleType columns should only contain one feature.") |
| 250 | + val numOutputCols = numFeatures.head |
| 251 | + if (numOutputCols > 1) { |
| 252 | + assert( |
| 253 | + d >= 0.0 && d == d.toInt && d < numOutputCols, |
| 254 | + s"Values from column must be indices, but got $d.") |
| 255 | + f(d.toInt, 1.0) |
| 256 | + } else { |
| 257 | + f(0, d) |
| 258 | + } |
| 259 | + case vec: Vector => |
| 260 | + assert(numFeatures.length == vec.size, |
| 261 | + s"Vector column size was ${vec.size}, expected ${numFeatures.length}") |
| 262 | + vec.foreachActive { (i, v) => |
| 263 | + val numOutputCols = numFeatures(i) |
| 264 | + if (numOutputCols > 1) { |
| 265 | + assert( |
| 266 | + v >= 0.0 && v == v.toInt && v < numOutputCols, |
| 267 | + s"Values from column must be indices, but got $v.") |
| 268 | + f(outputOffsets(i) + v.toInt, 1.0) |
| 269 | + } else { |
| 270 | + f(outputOffsets(i), v) |
| 271 | + } |
| 272 | + } |
| 273 | + case null => |
| 274 | + throw new SparkException("Values to interact cannot be null.") |
| 275 | + case o => |
| 276 | + throw new SparkException(s"$o of type ${o.getClass.getName} is not supported.") |
| 277 | + } |
| 278 | +} |
0 commit comments