@@ -52,14 +52,14 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
5252 * The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient
5353 * Online Computation of Quantile Summaries]] by Greenwald and Khanna.
5454 *
55- * @param col the name of the numerical column
55+ * @param col the name of the numerical column.
5656 * @param probabilities a list of quantile probabilities
5757 * Each number must belong to [0, 1].
5858 * For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
5959 * @param relativeError The relative target precision to achieve (>= 0).
6060 * If set to zero, the exact quantiles are computed, which could be very expensive.
6161 * Note that values greater than 1 are accepted but give the same result as 1.
62- * @return the approximate quantiles at the given probabilities
62+ * @return the approximate quantiles at the given probabilities.
6363 *
6464 * @since 2.0.0
6565 */
@@ -70,6 +70,20 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
7070 StatFunctions .multipleApproxQuantiles(df, Seq (col), probabilities, relativeError).head.toArray
7171 }
7272
73+ /**
74+ * Calculates the approximate quantiles of numerical columns of a DataFrame.
75+ *
76+ * @param cols the names of the numerical columns.
77+ * @param probabilities a list of quantile probabilities
78+ * Each number must belong to [0, 1].
79+ * For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
80+ * @param relativeError The relative target precision to achieve (>= 0).
81+ * If set to zero, the exact quantiles are computed, which could be very expensive.
82+ * Note that values greater than 1 are accepted but give the same result as 1.
83+ * @return the approximate quantiles at the given probabilities for given columns.
84+ *
85+ * @since 2.0.0
86+ */
7387 def approxQuantile (
7488 cols : Array [String ],
7589 probabilities : Array [Double ],
@@ -88,6 +102,10 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
88102 approxQuantile(col, probabilities.toArray, relativeError).toList.asJava
89103 }
90104
105+ /**
106+ * Python-friendly version of [[approxQuantile() ]] that computes approximate quantiles
107+ * for multiple columns.
108+ */
91109 private [spark] def approxQuantile (
92110 cols : List [String ],
93111 probabilities : List [Double ],
0 commit comments