@@ -214,12 +214,13 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
214214 /*
215215 Using the following R code to load the data and train the model using glmnet package.
216216
217- > library("glmnet")
218- > data <- read.csv("path", header=FALSE)
219- > label = factor(data$V1)
220- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
221- > weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 0))
222- > weights
217+ library("glmnet")
218+ data <- read.csv("path", header=FALSE)
219+ label = factor(data$V1)
220+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
221+ weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 0))
222+ weights
223+
223224 5 x 1 sparse Matrix of class "dgCMatrix"
224225 s0
225226 (Intercept) 2.8366423
@@ -245,13 +246,14 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
245246 /*
246247 Using the following R code to load the data and train the model using glmnet package.
247248
248- > library("glmnet")
249- > data <- read.csv("path", header=FALSE)
250- > label = factor(data$V1)
251- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
252- > weights =
249+ library("glmnet")
250+ data <- read.csv("path", header=FALSE)
251+ label = factor(data$V1)
252+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
253+ weights =
253254 coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 0, intercept=FALSE))
254- > weights
255+ weights
256+
255257 5 x 1 sparse Matrix of class "dgCMatrix"
256258 s0
257259 (Intercept) .
@@ -278,12 +280,13 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
278280 /*
279281 Using the following R code to load the data and train the model using glmnet package.
280282
281- > library("glmnet")
282- > data <- read.csv("path", header=FALSE)
283- > label = factor(data$V1)
284- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
285- > weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12))
286- > weights
283+ library("glmnet")
284+ data <- read.csv("path", header=FALSE)
285+ label = factor(data$V1)
286+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
287+ weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12))
288+ weights
289+
287290 5 x 1 sparse Matrix of class "dgCMatrix"
288291 s0
289292 (Intercept) -0.05627428
@@ -310,13 +313,14 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
310313 /*
311314 Using the following R code to load the data and train the model using glmnet package.
312315
313- > library("glmnet")
314- > data <- read.csv("path", header=FALSE)
315- > label = factor(data$V1)
316- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
317- > weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12,
316+ library("glmnet")
317+ data <- read.csv("path", header=FALSE)
318+ label = factor(data$V1)
319+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
320+ weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12,
318321 intercept=FALSE))
319- > weights
322+ weights
323+
320324 5 x 1 sparse Matrix of class "dgCMatrix"
321325 s0
322326 (Intercept) .
@@ -343,12 +347,13 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
343347 /*
344348 Using the following R code to load the data and train the model using glmnet package.
345349
346- > library("glmnet")
347- > data <- read.csv("path", header=FALSE)
348- > label = factor(data$V1)
349- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
350- > weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37))
351- > weights
350+ library("glmnet")
351+ data <- read.csv("path", header=FALSE)
352+ label = factor(data$V1)
353+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
354+ weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37))
355+ weights
356+
352357 5 x 1 sparse Matrix of class "dgCMatrix"
353358 s0
354359 (Intercept) 0.15021751
@@ -375,13 +380,14 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
375380 /*
376381 Using the following R code to load the data and train the model using glmnet package.
377382
378- > library("glmnet")
379- > data <- read.csv("path", header=FALSE)
380- > label = factor(data$V1)
381- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
382- > weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37,
383+ library("glmnet")
384+ data <- read.csv("path", header=FALSE)
385+ label = factor(data$V1)
386+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
387+ weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37,
383388 intercept=FALSE))
384- > weights
389+ weights
390+
385391 5 x 1 sparse Matrix of class "dgCMatrix"
386392 s0
387393 (Intercept) .
@@ -408,12 +414,13 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
408414 /*
409415 Using the following R code to load the data and train the model using glmnet package.
410416
411- > library("glmnet")
412- > data <- read.csv("path", header=FALSE)
413- > label = factor(data$V1)
414- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
415- > weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21))
416- > weights
417+ library("glmnet")
418+ data <- read.csv("path", header=FALSE)
419+ label = factor(data$V1)
420+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
421+ weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21))
422+ weights
423+
417424 5 x 1 sparse Matrix of class "dgCMatrix"
418425 s0
419426 (Intercept) 0.57734851
@@ -440,13 +447,14 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
440447 /*
441448 Using the following R code to load the data and train the model using glmnet package.
442449
443- > library("glmnet")
444- > data <- read.csv("path", header=FALSE)
445- > label = factor(data$V1)
446- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
447- > weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21,
450+ library("glmnet")
451+ data <- read.csv("path", header=FALSE)
452+ label = factor(data$V1)
453+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
454+ weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21,
448455 intercept=FALSE))
449- > weights
456+ weights
457+
450458 5 x 1 sparse Matrix of class "dgCMatrix"
451459 s0
452460 (Intercept) .
@@ -503,12 +511,13 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext {
503511 /*
504512 Using the following R code to load the data and train the model using glmnet package.
505513
506- > library("glmnet")
507- > data <- read.csv("path", header=FALSE)
508- > label = factor(data$V1)
509- > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
510- > weights = coef(glmnet(features,label, family="binomial", alpha = 1.0, lambda = 6.0))
511- > weights
514+ library("glmnet")
515+ data <- read.csv("path", header=FALSE)
516+ label = factor(data$V1)
517+ features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
518+ weights = coef(glmnet(features,label, family="binomial", alpha = 1.0, lambda = 6.0))
519+ weights
520+
512521 5 x 1 sparse Matrix of class "dgCMatrix"
513522 s0
514523 (Intercept) -0.2480643
0 commit comments