@@ -43,7 +43,7 @@ class DecisionTree (private val strategy: Strategy) extends Serializable with Lo
4343 /**
4444 * Method to train a decision tree model over an RDD
4545 * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint ]]
46- * @return DecisionTreeModel which can be used for prediction
46+ * @return DecisionTreeModel that can be used for prediction
4747 */
4848 def train (input : RDD [LabeledPoint ]): DecisionTreeModel = {
4949
@@ -206,7 +206,7 @@ object DecisionTree extends Serializable with Logging {
206206 * @param strategy The configuration parameters for the tree algorithm which specify the type
207207 * of algorithm (classification, regression, etc.), feature type (continuous,
208208 * categorical), depth of the tree, quantile calculation strategy, etc.
209- * @return DecisionTreeModel which can be used for prediction
209+ * @return DecisionTreeModel that can be used for prediction
210210 */
211211 def train (input : RDD [LabeledPoint ], strategy : Strategy ): DecisionTreeModel = {
212212 new DecisionTree (strategy).train(input)
@@ -225,7 +225,7 @@ object DecisionTree extends Serializable with Logging {
225225 * @param impurity impurity criterion used for information gain calculation
226226 * @param maxDepth Maximum depth of the tree.
227227 * E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.
228- * @return DecisionTreeModel which can be used for prediction
228+ * @return DecisionTreeModel that can be used for prediction
229229 */
230230 def train (
231231 input : RDD [LabeledPoint ],
@@ -250,7 +250,7 @@ object DecisionTree extends Serializable with Logging {
250250 * @param maxDepth Maximum depth of the tree.
251251 * E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.
252252 * @param numClassesForClassification number of classes for classification. Default value of 2.
253- * @return DecisionTreeModel which can be used for prediction
253+ * @return DecisionTreeModel that can be used for prediction
254254 */
255255 def train (
256256 input : RDD [LabeledPoint ],
@@ -284,7 +284,7 @@ object DecisionTree extends Serializable with Logging {
284284 * an entry (n -> k) implies the feature n is categorical with k
285285 * categories 0, 1, 2, ... , k-1. It's important to note that
286286 * features are zero-indexed.
287- * @return DecisionTreeModel which can be used for prediction
287+ * @return DecisionTreeModel that can be used for prediction
288288 */
289289 def train (
290290 input : RDD [LabeledPoint ],
0 commit comments