@@ -197,6 +197,13 @@ NULL
197197# ' \item \code{array_position}: a value to locate in the given array.
198198# ' \item \code{array_remove}: a value to remove in the given array.
199199# ' }
200+ # ' @param schema
201+ # ' \itemize{
202+ # ' \item \code{from_json}: a structType object to use as the schema to use
203+ # ' when parsing the JSON string. Since Spark 2.3, the DDL-formatted string is
204+ # ' also supported for the schema.
205+ # ' \item \code{from_csv}: a DDL-formatted string
206+ # ' }
200207# ' @param ... additional argument(s). In \code{to_json}, \code{from_json} and \code{from_csv},
201208# ' this contains additional named properties to control how it is converted, accepts
202209# ' the same options as the JSON and CSV data source. In \code{arrays_zip},
@@ -2165,8 +2172,6 @@ setMethod("date_format", signature(y = "Column", x = "character"),
21652172# ' to \code{TRUE}. If the string is unparseable, the Column will contain the value NA.
21662173# '
21672174# ' @rdname column_collection_functions
2168- # ' @param schema a structType object to use as the schema to use when parsing the JSON string.
2169- # ' Since Spark 2.3, the DDL-formatted string is also supported for the schema.
21702175# ' @param as.json.array indicating if input string is JSON array of objects or a single object.
21712176# ' @aliases from_json from_json,Column,characterOrstructType-method
21722177# ' @examples
@@ -2209,7 +2214,6 @@ setMethod("from_json", signature(x = "Column", schema = "characterOrstructType")
22092214# ' If the string is unparseable, the Column will contain the value NA.
22102215# '
22112216# ' @rdname column_collection_functions
2212- # ' @param schema a DDL-formatted string
22132217# ' @aliases from_csv from_csv,Column,character-method
22142218# '
22152219# ' @note from_csv since 3.0.0
0 commit comments