@@ -73,7 +73,7 @@ class RuleClassifier(BaseOperator, BaseClassifier):
7373
7474 def __init__ (
7575 self ,
76- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
76+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
7777 induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
7878 pruning_measure : Union [Measures ,
7979 str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -88,14 +88,14 @@ def __init__(
8888 max_rule_count : int = DEFAULT_PARAMS_VALUE ['max_rule_count' ],
8989 approximate_induction : bool = DEFAULT_PARAMS_VALUE ['approximate_induction' ],
9090 approximate_bins_count : int = DEFAULT_PARAMS_VALUE ['approximate_bins_count' ],
91- min_rule_covered : Optional [int ] = None ,
91+ min_rule_covered : Optional [float ] = None ,
9292 ):
9393 """
9494 Parameters
9595 ----------
96- minsupp_new : int = 5
97- positive integer representing minimum number of previously uncovered examples to be
98- covered by a new rule (positive examples for classification problems); default: 5
96+ minsupp_new : float = 5.0
97+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
98+ to be covered by a new rule (positive examples for classification problems); default: 5,
9999 induction_measure : :class:`rulekit.params.Measures` = :class:`rulekit.params.\
100100 Measures.Correlation`
101101 measure used during induction; default measure is correlation
@@ -137,7 +137,7 @@ def __init__(
137137 data sets, results may change in future;
138138 approximate_bins_count: int = 100
139139 maximum number of bins for an attribute evaluated in the approximate induction.
140- min_rule_covered : int = None
140+ min_rule_covered : float = None
141141 alias to `minsupp_new`. Parameter is deprecated and will be removed in the next major
142142 version, use `minsupp_new`
143143
@@ -327,7 +327,7 @@ class ExpertRuleClassifier(ExpertKnowledgeOperator, RuleClassifier):
327327
328328 def __init__ (
329329 self ,
330- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
330+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
331331 induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
332332 pruning_measure : Union [Measures ,
333333 str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -352,14 +352,14 @@ def __init__(
352352 'preferred_conditions_per_rule' ],
353353 preferred_attributes_per_rule : int = DEFAULT_PARAMS_VALUE [
354354 'preferred_attributes_per_rule' ],
355- min_rule_covered : Optional [int ] = None
355+ min_rule_covered : Optional [float ] = None
356356 ):
357357 """
358358 Parameters
359359 ----------
360- minsupp_new : int = 5
361- positive integer representing minimum number of previously uncovered examples to be
362- covered by a new rule (positive examples for classification problems); default: 5
360+ minsupp_new : float = 5.0
361+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
362+ to be covered by a new rule (positive examples for classification problems); default: 5,
363363 induction_measure : :class:`rulekit.params.Measures` = \
364364 :class:`rulekit.params.Measures.Correlation`
365365 measure used during induction; default measure is correlation
@@ -421,7 +421,7 @@ def __init__(
421421 maximum number of preferred conditions per rule; default: unlimited,
422422 preferred_attributes_per_rule : int = None
423423 maximum number of preferred attributes per rule; default: unlimited.
424- min_rule_covered : int = None
424+ min_rule_covered : float = None
425425 alias to `minsupp_new`. Parameter is deprecated and will be removed in the next major
426426 version, use `minsupp_new`
427427
@@ -555,7 +555,7 @@ def __init__(
555555 penalty_strength : float = DEFAULT_PARAMS_VALUE ['penalty_strength' ],
556556 penalty_saturation : float = DEFAULT_PARAMS_VALUE ['penalty_saturation' ],
557557
558- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
558+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
559559 induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
560560 pruning_measure : Union [Measures ,
561561 str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -585,9 +585,9 @@ def __init__(
585585 (s) - penalty strength; Default is 0.5
586586 penalty_saturation: float
587587 the value of p_new / P at which penalty reward saturates; Default is 0.2.
588- minsupp_new : int = 5
589- positive integer representing minimum number of previously uncovered examples to be
590- covered by a new rule (positive examples for classification problems); default: 5
588+ minsupp_new : float = 5.0
589+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
590+ to be covered by a new rule (positive examples for classification problems); default: 5,
591591 induction_measure : :class:`rulekit.params.Measures` = \
592592 :class:`rulekit.params.Measures.Correlation`
593593 measure used during induction; default measure is correlation
0 commit comments