@@ -37,18 +37,18 @@ rng = Random.default_rng()
3737Random.seed!(rng, 1234)
3838
3939# Generate artificial data
40- x1s = rand(rng, Float32, M) * 4.5f0;
41- x2s = rand(rng, Float32, M) * 4.5f0;
40+ x1s = rand(rng, M) * 4.5f0;
41+ x2s = rand(rng, M) * 4.5f0;
4242xt1s = Array([[x1s[i] + 0.5f0; x2s[i] + 0.5f0] for i in 1:M])
43- x1s = rand(rng, Float32, M) * 4.5f0;
44- x2s = rand(rng, Float32, M) * 4.5f0;
43+ x1s = rand(rng, M) * 4.5f0;
44+ x2s = rand(rng, M) * 4.5f0;
4545append!(xt1s, Array([[x1s[i] - 5.0f0; x2s[i] - 5.0f0] for i in 1:M]))
4646
47- x1s = rand(rng, Float32, M) * 4.5f0;
48- x2s = rand(rng, Float32, M) * 4.5f0;
47+ x1s = rand(rng, M) * 4.5f0;
48+ x2s = rand(rng, M) * 4.5f0;
4949xt0s = Array([[x1s[i] + 0.5f0; x2s[i] - 5.0f0] for i in 1:M])
50- x1s = rand(rng, Float32, M) * 4.5f0;
51- x2s = rand(rng, Float32, M) * 4.5f0;
50+ x1s = rand(rng, M) * 4.5f0;
51+ x2s = rand(rng, M) * 4.5f0;
5252append!(xt0s, Array([[x1s[i] - 5.0f0; x2s[i] + 0.5f0] for i in 1:M]))
5353
5454# Store all the data for later
@@ -189,7 +189,7 @@ const nn = StatefulLuxLayer{true}(nn_initial, nothing, st)
189189 parameters ~ MvNormal(zeros(nparameters), Diagonal(abs2.(sigma .* ones(nparameters))))
190190
191191 # Forward NN to make predictions
192- preds = Lux.apply(nn, xs, vector_to_parameters(parameters, ps))
192+ preds = Lux.apply(nn, xs, f64( vector_to_parameters(parameters, ps) ))
193193
194194 # Observe each prediction.
195195 for i in eachindex(ts)
0 commit comments