|
| 1 | +module OptimizationODE |
| 2 | + |
| 3 | +using Reexport |
| 4 | +@reexport using Optimization, SciMLBase |
| 5 | +using OrdinaryDiffEq, SteadyStateDiffEq |
| 6 | + |
| 7 | +export ODEOptimizer, ODEGradientDescent, RKChebyshevDescent, RKAccelerated, HighOrderDescent |
| 8 | + |
| 9 | +struct ODEOptimizer{T, T2} |
| 10 | + solver::T |
| 11 | + dt::T2 |
| 12 | +end |
| 13 | +ODEOptimizer(solver ; dt=nothing) = ODEOptimizer(solver, dt) |
| 14 | + |
| 15 | +# Solver Constructors (users call these) |
| 16 | +ODEGradientDescent(; dt) = ODEOptimizer(Euler(); dt) |
| 17 | +RKChebyshevDescent() = ODEOptimizer(ROCK2()) |
| 18 | +RKAccelerated() = ODEOptimizer(Tsit5()) |
| 19 | +HighOrderDescent() = ODEOptimizer(Vern7()) |
| 20 | + |
| 21 | + |
| 22 | +SciMLBase.requiresbounds(::ODEOptimizer) = false |
| 23 | +SciMLBase.allowsbounds(::ODEOptimizer) = false |
| 24 | +SciMLBase.allowscallback(::ODEOptimizer) = true |
| 25 | +SciMLBase.supports_opt_cache_interface(::ODEOptimizer) = true |
| 26 | +SciMLBase.requiresgradient(::ODEOptimizer) = true |
| 27 | +SciMLBase.requireshessian(::ODEOptimizer) = false |
| 28 | +SciMLBase.requiresconsjac(::ODEOptimizer) = false |
| 29 | +SciMLBase.requiresconshess(::ODEOptimizer) = false |
| 30 | + |
| 31 | + |
| 32 | +function SciMLBase.__init(prob::OptimizationProblem, opt::ODEOptimizer; |
| 33 | + callback=Optimization.DEFAULT_CALLBACK, progress=false, |
| 34 | + maxiters=nothing, kwargs...) |
| 35 | + |
| 36 | + return OptimizationCache(prob, opt; callback=callback, progress=progress, |
| 37 | + maxiters=maxiters, kwargs...) |
| 38 | +end |
| 39 | + |
| 40 | +function SciMLBase.__solve( |
| 41 | + cache::OptimizationCache{F,RC,LB,UB,LC,UC,S,O,D,P,C} |
| 42 | + ) where {F,RC,LB,UB,LC,UC,S,O<:ODEOptimizer,D,P,C} |
| 43 | + |
| 44 | + dt = cache.opt.dt |
| 45 | + maxit = get(cache.solver_args, :maxiters, 1000) |
| 46 | + |
| 47 | + u0 = copy(cache.u0) |
| 48 | + p = cache.p |
| 49 | + |
| 50 | + if cache.f.grad === nothing |
| 51 | + error("ODEOptimizer requires a gradient. Please provide a function with `grad` defined.") |
| 52 | + end |
| 53 | + |
| 54 | + function f!(du, u, p, t) |
| 55 | + cache.f.grad(du, u, p) |
| 56 | + @. du = -du |
| 57 | + return nothing |
| 58 | + end |
| 59 | + |
| 60 | + ss_prob = SteadyStateProblem(f!, u0, p) |
| 61 | + |
| 62 | + algorithm = DynamicSS(cache.opt.solver) |
| 63 | + |
| 64 | + cb = cache.callback |
| 65 | + if cb != Optimization.DEFAULT_CALLBACK || get(cache.solver_args,:progress,false) === true |
| 66 | + function condition(u, t, integrator) |
| 67 | + true |
| 68 | + end |
| 69 | + function affect!(integrator) |
| 70 | + u_now = integrator.u |
| 71 | + state = Optimization.OptimizationState(u=u_now, objective=cache.f(integrator.u, integrator.p)) |
| 72 | + Optimization.callback_function(cb, state) |
| 73 | + end |
| 74 | + cb_struct = DiscreteCallback(condition, affect!) |
| 75 | + callback = CallbackSet(cb_struct) |
| 76 | + else |
| 77 | + callback = nothing |
| 78 | + end |
| 79 | + |
| 80 | + solve_kwargs = Dict{Symbol, Any}(:callback => callback) |
| 81 | + if !isnothing(maxit) |
| 82 | + solve_kwargs[:maxiters] = maxit |
| 83 | + end |
| 84 | + if dt !== nothing |
| 85 | + solve_kwargs[:dt] = dt |
| 86 | + end |
| 87 | + |
| 88 | + sol = solve(ss_prob, algorithm; solve_kwargs...) |
| 89 | +has_destats = hasproperty(sol, :destats) |
| 90 | +has_t = hasproperty(sol, :t) && !isempty(sol.t) |
| 91 | + |
| 92 | +stats = Optimization.OptimizationStats( |
| 93 | + iterations = has_destats ? get(sol.destats, :iters, 10) : (has_t ? length(sol.t) - 1 : 10), |
| 94 | + time = has_t ? sol.t[end] : 0.0, |
| 95 | + fevals = has_destats ? get(sol.destats, :f_calls, 0) : 0, |
| 96 | + gevals = has_destats ? get(sol.destats, :iters, 0) : 0, |
| 97 | + hevals = 0 |
| 98 | +) |
| 99 | + |
| 100 | + SciMLBase.build_solution(cache, cache.opt, sol.u, cache.f(sol.u, p); |
| 101 | + retcode = ReturnCode.Success, |
| 102 | + stats = stats |
| 103 | + ) |
| 104 | +end |
| 105 | + |
| 106 | +end |
0 commit comments