From b8f586bcc4143b7f995e590ba345b2148425b9c3 Mon Sep 17 00:00:00 2001 From: scr2016 Date: Sat, 29 Oct 2022 02:47:52 -0700 Subject: [PATCH 1/2] added a new routines [S,D,C,Z]GELST and test code for the least squares algorithm that solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q inside the routine. *GELST is similar to *GELS, but unlike *GELS does not compute triangular blocks twice, i.e. runs faster. modified: SRC/Makefile new file: SRC/cgelst.f new file: SRC/dgelst.f new file: SRC/sgelst.f new file: SRC/zgelst.f modified: TESTING/LIN/alahd.f modified: TESTING/LIN/cdrvls.f modified: TESTING/LIN/cerrls.f modified: TESTING/LIN/ddrvls.f modified: TESTING/LIN/derrls.f modified: TESTING/LIN/sdrvls.f modified: TESTING/LIN/serrls.f modified: TESTING/LIN/zdrvls.f --- SRC/CMakeLists.txt | 8 +- SRC/Makefile | 8 +- SRC/cgelst.f | 533 +++++++++++++++++++++++++++++++++++++++++++ SRC/dgelst.f | 531 ++++++++++++++++++++++++++++++++++++++++++ SRC/sgelst.f | 531 ++++++++++++++++++++++++++++++++++++++++++ SRC/zgelst.f | 533 +++++++++++++++++++++++++++++++++++++++++++ TESTING/LIN/alahd.f | 22 +- TESTING/LIN/cdrvls.f | 320 +++++++++++++++++++------- TESTING/LIN/cerrls.f | 61 ++++- TESTING/LIN/ddrvls.f | 339 ++++++++++++++++++++------- TESTING/LIN/derrls.f | 61 ++++- TESTING/LIN/sdrvls.f | 333 ++++++++++++++++++++------- TESTING/LIN/serrls.f | 61 ++++- TESTING/LIN/zdrvls.f | 333 ++++++++++++++++++++------- 14 files changed, 3311 insertions(+), 363 deletions(-) create mode 100644 SRC/cgelst.f create mode 100644 SRC/dgelst.f create mode 100644 SRC/sgelst.f create mode 100644 SRC/zgelst.f diff --git a/SRC/CMakeLists.txt b/SRC/CMakeLists.txt index d324d94116..5d2e072584 100644 --- a/SRC/CMakeLists.txt +++ b/SRC/CMakeLists.txt @@ -86,7 +86,7 @@ set(SLASRC sgbsvx.f sgbtf2.f sgbtrf.f sgbtrs.f sgebak.f sgebal.f sgebd2.f sgebrd.f sgecon.f sgeequ.f sgees.f sgeesx.f sgeev.f sgeevx.f sgehd2.f sgehrd.f sgelq2.f sgelqf.f - sgels.f sgelsd.f sgelss.f sgelsy.f sgeql2.f sgeqlf.f + sgels.f sgelst.f sgelsd.f sgelss.f sgelsy.f sgeql2.f sgeqlf.f sgeqp3.f sgeqr2.f sgeqr2p.f sgeqrf.f sgeqrfp.f sgerfs.f sgerq2.f sgerqf.f sgesc2.f sgesdd.f sgesv.f sgesvd.f sgesvdx.f sgesvx.f sgetc2.f sgetf2.f sgetri.f @@ -177,7 +177,7 @@ set(CLASRC cgbtf2.f cgbtrf.f cgbtrs.f cgebak.f cgebal.f cgebd2.f cgebrd.f cgecon.f cgeequ.f cgees.f cgeesx.f cgeev.f cgeevx.f cgehd2.f cgehrd.f cgelq2.f cgelqf.f - cgels.f cgelsd.f cgelss.f cgelsy.f cgeql2.f cgeqlf.f cgeqp3.f + cgels.f cgelst.f cgelsd.f cgelss.f cgelsy.f cgeql2.f cgeqlf.f cgeqp3.f cgeqr2.f cgeqr2p.f cgeqrf.f cgeqrfp.f cgerfs.f cgerq2.f cgerqf.f cgesc2.f cgesdd.f cgesv.f cgesvd.f cgesvdx.f cgesvj.f cgejsv.f cgsvj0.f cgsvj1.f @@ -286,7 +286,7 @@ set(DLASRC dgbsvx.f dgbtf2.f dgbtrf.f dgbtrs.f dgebak.f dgebal.f dgebd2.f dgebrd.f dgecon.f dgeequ.f dgees.f dgeesx.f dgeev.f dgeevx.f dgehd2.f dgehrd.f dgelq2.f dgelqf.f - dgels.f dgelsd.f dgelss.f dgelsy.f dgeql2.f dgeqlf.f + dgels.f dgelst.f dgelsd.f dgelss.f dgelsy.f dgeql2.f dgeqlf.f dgeqp3.f dgeqr2.f dgeqr2p.f dgeqrf.f dgeqrfp.f dgerfs.f dgerq2.f dgerqf.f dgesc2.f dgesdd.f dgesv.f dgesvd.f dgesvdx.f dgesvx.f dgetc2.f dgetf2.f dgetrf.f dgetrf2.f dgetri.f @@ -375,7 +375,7 @@ set(ZLASRC zgbtf2.f zgbtrf.f zgbtrs.f zgebak.f zgebal.f zgebd2.f zgebrd.f zgecon.f zgeequ.f zgees.f zgeesx.f zgeev.f zgeevx.f zgehd2.f zgehrd.f zgelq2.f zgelqf.f - zgels.f zgelsd.f zgelss.f zgelsy.f zgeql2.f zgeqlf.f zgeqp3.f + zgels.f zgelst.f zgelsd.f zgelss.f zgelsy.f zgeql2.f zgeqlf.f zgeqp3.f zgeqr2.f zgeqr2p.f zgeqrf.f zgeqrfp.f zgerfs.f zgerq2.f zgerqf.f zgesc2.f zgesdd.f zgesv.f zgesvd.f zgesvdx.f zgesvx.f zgesvj.f zgejsv.f zgsvj0.f zgsvj1.f diff --git a/SRC/Makefile b/SRC/Makefile index 765abf42ac..35b8c64aea 100644 --- a/SRC/Makefile +++ b/SRC/Makefile @@ -118,7 +118,7 @@ SLASRC = \ sgbsvx.o sgbtf2.o sgbtrf.o sgbtrs.o sgebak.o sgebal.o sgebd2.o \ sgebrd.o sgecon.o sgeequ.o sgees.o sgeesx.o sgeev.o sgeevx.o \ sgehd2.o sgehrd.o sgelq2.o sgelqf.o \ - sgels.o sgelsd.o sgelss.o sgelsy.o sgeql2.o sgeqlf.o \ + sgels.o sgelst.o sgelsd.o sgelss.o sgelsy.o sgeql2.o sgeqlf.o \ sgeqp3.o sgeqr2.o sgeqr2p.o sgeqrf.o sgeqrfp.o sgerfs.o \ sgerq2.o sgerqf.o sgesc2.o sgesdd.o sgesv.o sgesvd.o sgesvdx.o sgesvx.o \ sgetc2.o sgetf2.o sgetri.o \ @@ -211,7 +211,7 @@ CLASRC = \ cgbtf2.o cgbtrf.o cgbtrs.o cgebak.o cgebal.o cgebd2.o cgebrd.o \ cgecon.o cgeequ.o cgees.o cgeesx.o cgeev.o cgeevx.o \ cgehd2.o cgehrd.o cgelq2.o cgelqf.o \ - cgels.o cgelsd.o cgelss.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \ + cgels.o cgelst.o cgelsd.o cgelss.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \ cgeqr2.o cgeqr2p.o cgeqrf.o cgeqrfp.o cgerfs.o \ cgerq2.o cgerqf.o cgesc2.o cgesdd.o cgesv.o cgesvd.o cgesvdx.o \ cgesvj.o cgejsv.o cgsvj0.o cgsvj1.o \ @@ -320,7 +320,7 @@ DLASRC = \ dgbsvx.o dgbtf2.o dgbtrf.o dgbtrs.o dgebak.o dgebal.o dgebd2.o \ dgebrd.o dgecon.o dgeequ.o dgees.o dgeesx.o dgeev.o dgeevx.o \ dgehd2.o dgehrd.o dgelq2.o dgelqf.o \ - dgels.o dgelsd.o dgelss.o dgelsy.o dgeql2.o dgeqlf.o \ + dgels.o dgelst.o dgelsd.o dgelss.o dgelsy.o dgeql2.o dgeqlf.o \ dgeqp3.o dgeqr2.o dgeqr2p.o dgeqrf.o dgeqrfp.o dgerfs.o \ dgerq2.o dgerqf.o dgesc2.o dgesdd.o dgesv.o dgesvd.o dgesvdx.o dgesvx.o \ dgetc2.o dgetf2.o dgetrf.o dgetri.o \ @@ -412,7 +412,7 @@ ZLASRC = \ zgbtf2.o zgbtrf.o zgbtrs.o zgebak.o zgebal.o zgebd2.o zgebrd.o \ zgecon.o zgeequ.o zgees.o zgeesx.o zgeev.o zgeevx.o \ zgehd2.o zgehrd.o zgelq2.o zgelqf.o \ - zgels.o zgelsd.o zgelss.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \ + zgels.o zgelst.o zgelsd.o zgelss.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \ zgeqr2.o zgeqr2p.o zgeqrf.o zgeqrfp.o zgerfs.o zgerq2.o zgerqf.o \ zgesc2.o zgesdd.o zgesv.o zgesvd.o zgesvdx.o \ zgesvj.o zgejsv.o zgsvj0.o zgsvj1.o \ diff --git a/SRC/cgelst.f b/SRC/cgelst.f new file mode 100644 index 0000000000..26dda1c0ca --- /dev/null +++ b/SRC/cgelst.f @@ -0,0 +1,533 @@ +*> \brief CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download CGELST + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, +* INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. +* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CGELST solves overdetermined or underdetermined real linear systems +*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR +*> or LQ factorization of A with compact WY representation of Q. +*> It is assumed that A has full rank. +*> +*> The following options are provided: +*> +*> 1. If TRANS = 'N' and m >= n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A*X ||. +*> +*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of +*> an underdetermined system A * X = B. +*> +*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of +*> an underdetermined system A**T * X = B. +*> +*> 4. If TRANS = 'C' and m < n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A**T * X ||. +*> +*> Several right hand side vectors b and solution vectors x can be +*> handled in a single call; they are stored as the columns of the +*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution +*> matrix X. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': the linear system involves A; +*> = 'C': the linear system involves A**H. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of +*> columns of the matrices B and X. NRHS >=0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit, +*> if M >= N, A is overwritten by details of its QR +*> factorization as returned by CGEQRT; +*> if M < N, A is overwritten by details of its LQ +*> factorization as returned by CGELQT. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is COMPLEX array, dimension (LDB,NRHS) +*> On entry, the matrix B of right hand side vectors, stored +*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS +*> if TRANS = 'C'. +*> On exit, if INFO = 0, B is overwritten by the solution +*> vectors, stored columnwise: +*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least +*> squares solution vectors; the residual sum of squares for the +*> solution in each column is given by the sum of squares of +*> modulus of elements N+1 to M in that column; +*> if TRANS = 'N' and m < n, rows 1 to N of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'C' and m < n, rows 1 to M of B contain the +*> least squares solution vectors; the residual sum of squares +*> for the solution in each column is given by the sum of +*> squares of the modulus of elements M+1 to N in that column. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= MAX(1,M,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= max( 1, MN + max( MN, NRHS ) ). +*> For optimal performance, +*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ). +*> where MN = min(M,N) and NB is the optimum block size. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, the i-th diagonal element of the +*> triangular factor of A is zero, so that A does not have +*> full rank; the least squares solution could not be +*> computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup complexGEsolve +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2022, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> \endverbatim +* +* ===================================================================== + SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO, ONE + PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) + COMPLEX CZERO + PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, TPSD + INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS, + $ NB, NBMIN, SCLLEN + REAL ANRM, BIGNUM, BNRM, SMLNUM +* .. +* .. Local Arrays .. + REAL RWORK( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + REAL SLAMCH, CLANGE + EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE +* .. +* .. External Subroutines .. + EXTERNAL CGELQT, CGEQRT, CGEMLQT, CGEMQRT, SLABAD, + $ CLASCL, CLASET, CTRTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC REAL, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -8 + ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) + $ THEN + INFO = -10 + END IF +* +* Figure out optimal block size and optimal workspace size +* + IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN +* + TPSD = .TRUE. + IF( LSAME( TRANS, 'N' ) ) + $ TPSD = .FALSE. +* + NB = ILAENV( 1, 'CGELST', ' ', M, N, -1, -1 ) +* + MNNRHS = MAX( MN, NRHS ) + LWOPT = MAX( 1, (MN+MNNRHS)*NB ) + WORK( 1 ) = REAL( LWOPT ) +* + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CGELST ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + WORK( 1 ) = REAL( LWOPT ) + RETURN + END IF +* +* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N) +* + IF( NB.GT.MN ) NB = MN +* +* Determine the block size from the supplied LWORK +* ( at this stage we know that LWORK >= (minimum required workspace, +* but it may be less than optimal) +* + NB = MIN( NB, LWORK/( MN + MNNRHS ) ) +* +* The minimum value of NB, when blocked code is used +* + NBMIN = MAX( 2, ILAENV( 2, 'CGELST', ' ', M, N, -1, -1 ) ) +* + IF( NB.LT.NBMIN ) THEN + NB = 1 + END IF +* +* Get machine parameters +* + SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL SLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max element outside range [SMLNUM,BIGNUM] +* + ANRM = CLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + WORK( 1 ) = REAL( LWOPT ) + RETURN + END IF +* + BROW = M + IF( TPSD ) + $ BROW = N + BNRM = CLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 2 + END IF +* + IF( M.GE.N ) THEN +* +* M > N: +* Compute the blocked QR factorization of A, +* using the compact WY representation of Q, +* workspace at least N, optimally N*NB. +* + CALL CGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M > N, A is not transposed: +* Overdetermined system of equations, +* least-squares problem, min || A * X - B ||. +* +* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL CGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* +* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) +* + CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = N +* + ELSE +* +* M > N, A is transposed: +* Underdetermined system of equations, +* minimum norm solution of A**T * X = B. +* +* Compute B := inv(R**T) * B in two row blocks of B. +* +* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) +* + CALL CTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit', + $ N, NRHS, A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the N-th row in B: +* B(N+1:M,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = N + 1, M + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL CGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = M +* + END IF +* + ELSE +* +* M < N: +* Compute the blocked LQ factorization of A, +* using the compact WY representation of Q, +* workspace at least M, optimally M*NB. +* + CALL CGELQT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M < N, A is not transposed: +* Underdetermined system of equations, +* minimum norm solution of A * X = B. +* +* Compute B := inv(L) * B in two row blocks of B. +* +* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) +* + CALL CTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the M-th row in B: +* B(M+1:N,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = M + 1, N + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL CGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = N +* + ELSE +* +* M < N, A is transposed: +* Overdetermined system of equations, +* least-squares problem, min || A**T * X - B ||. +* +* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL CGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1), INFO ) +* +* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) +* + CALL CTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit', + $ M, NRHS, A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = M +* + END IF +* + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF +* + WORK( 1 ) = REAL( LWOPT ) +* + RETURN +* +* End of CGELST +* + END diff --git a/SRC/dgelst.f b/SRC/dgelst.f new file mode 100644 index 0000000000..80957d5113 --- /dev/null +++ b/SRC/dgelst.f @@ -0,0 +1,531 @@ +*> \brief DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGELST + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, +* INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGELST solves overdetermined or underdetermined real linear systems +*> involving an M-by-N matrix A, or its transpose, using a QR or LQ +*> factorization of A with compact WY representation of Q. +*> It is assumed that A has full rank. +*> +*> The following options are provided: +*> +*> 1. If TRANS = 'N' and m >= n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A*X ||. +*> +*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of +*> an underdetermined system A * X = B. +*> +*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of +*> an underdetermined system A**T * X = B. +*> +*> 4. If TRANS = 'T' and m < n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A**T * X ||. +*> +*> Several right hand side vectors b and solution vectors x can be +*> handled in a single call; they are stored as the columns of the +*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution +*> matrix X. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': the linear system involves A; +*> = 'T': the linear system involves A**T. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of +*> columns of the matrices B and X. NRHS >=0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit, +*> if M >= N, A is overwritten by details of its QR +*> factorization as returned by DGEQRT; +*> if M < N, A is overwritten by details of its LQ +*> factorization as returned by DGELQT. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) +*> On entry, the matrix B of right hand side vectors, stored +*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS +*> if TRANS = 'T'. +*> On exit, if INFO = 0, B is overwritten by the solution +*> vectors, stored columnwise: +*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least +*> squares solution vectors; the residual sum of squares for the +*> solution in each column is given by the sum of squares of +*> elements N+1 to M in that column; +*> if TRANS = 'N' and m < n, rows 1 to N of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'T' and m < n, rows 1 to M of B contain the +*> least squares solution vectors; the residual sum of squares +*> for the solution in each column is given by the sum of +*> squares of elements M+1 to N in that column. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= MAX(1,M,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= max( 1, MN + max( MN, NRHS ) ). +*> For optimal performance, +*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ). +*> where MN = min(M,N) and NB is the optimum block size. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, the i-th diagonal element of the +*> triangular factor of A is zero, so that A does not have +*> full rank; the least squares solution could not be +*> computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup doubleGEsolve +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2022, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> \endverbatim +* +* ===================================================================== + SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, TPSD + INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS, + $ NB, NBMIN, SCLLEN + DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM +* .. +* .. Local Arrays .. + DOUBLE PRECISION RWORK( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE +* .. +* .. External Subroutines .. + EXTERNAL DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD, + $ DLASCL, DLASET, DTRTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -8 + ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) + $ THEN + INFO = -10 + END IF +* +* Figure out optimal block size and optimal workspace size +* + IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN +* + TPSD = .TRUE. + IF( LSAME( TRANS, 'N' ) ) + $ TPSD = .FALSE. +* + NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 ) +* + MNNRHS = MAX( MN, NRHS ) + LWOPT = MAX( 1, (MN+MNNRHS)*NB ) + WORK( 1 ) = DBLE( LWOPT ) +* + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGELST ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + WORK( 1 ) = DBLE( LWOPT ) + RETURN + END IF +* +* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N) +* + IF( NB.GT.MN ) NB = MN +* +* Determine the block size from the supplied LWORK +* ( at this stage we know that LWORK >= (minimum required workspace, +* but it may be less than optimal) +* + NB = MIN( NB, LWORK/( MN + MNNRHS ) ) +* +* The minimum value of NB, when blocked code is used +* + NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) ) +* + IF( NB.LT.NBMIN ) THEN + NB = 1 + END IF +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max element outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + WORK( 1 ) = DBLE( LWOPT ) + RETURN + END IF +* + BROW = M + IF( TPSD ) + $ BROW = N + BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 2 + END IF +* + IF( M.GE.N ) THEN +* +* M > N: +* Compute the blocked QR factorization of A, +* using the compact WY representation of Q, +* workspace at least N, optimally N*NB. +* + CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M > N, A is not transposed: +* Overdetermined system of equations, +* least-squares problem, min || A * X - B ||. +* +* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA, + $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ), + $ INFO ) +* +* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) +* + CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = N +* + ELSE +* +* M > N, A is transposed: +* Underdetermined system of equations, +* minimum norm solution of A**T * X = B. +* +* Compute B := inv(R**T) * B in two row blocks of B. +* +* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) +* + CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the N-th row in B: +* B(N+1:M,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = N + 1, M + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = M +* + END IF +* + ELSE +* +* M < N: +* Compute the blocked LQ factorization of A, +* using the compact WY representation of Q, +* workspace at least M, optimally M*NB. +* + CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M < N, A is not transposed: +* Underdetermined system of equations, +* minimum norm solution of A * X = B. +* +* Compute B := inv(L) * B in two row blocks of B. +* +* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) +* + CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the M-th row in B: +* B(M+1:N,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = M + 1, N + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA, + $ WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = N +* + ELSE +* +* M < N, A is transposed: +* Overdetermined system of equations, +* least-squares problem, min || A**T * X - B ||. +* +* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1), INFO ) +* +* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) +* + CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = M +* + END IF +* + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF +* + WORK( 1 ) = DBLE( LWOPT ) +* + RETURN +* +* End of DGELST +* + END diff --git a/SRC/sgelst.f b/SRC/sgelst.f new file mode 100644 index 0000000000..5e27e37e38 --- /dev/null +++ b/SRC/sgelst.f @@ -0,0 +1,531 @@ +*> \brief SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download SGELST + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, +* INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. +* REAL A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> SGELST solves overdetermined or underdetermined real linear systems +*> involving an M-by-N matrix A, or its transpose, using a QR or LQ +*> factorization of A with compact WY representation of Q. +*> It is assumed that A has full rank. +*> +*> The following options are provided: +*> +*> 1. If TRANS = 'N' and m >= n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A*X ||. +*> +*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of +*> an underdetermined system A * X = B. +*> +*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of +*> an underdetermined system A**T * X = B. +*> +*> 4. If TRANS = 'T' and m < n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A**T * X ||. +*> +*> Several right hand side vectors b and solution vectors x can be +*> handled in a single call; they are stored as the columns of the +*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution +*> matrix X. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': the linear system involves A; +*> = 'T': the linear system involves A**T. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of +*> columns of the matrices B and X. NRHS >=0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is REAL array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit, +*> if M >= N, A is overwritten by details of its QR +*> factorization as returned by SGEQRT; +*> if M < N, A is overwritten by details of its LQ +*> factorization as returned by SGELQT. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is REAL array, dimension (LDB,NRHS) +*> On entry, the matrix B of right hand side vectors, stored +*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS +*> if TRANS = 'T'. +*> On exit, if INFO = 0, B is overwritten by the solution +*> vectors, stored columnwise: +*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least +*> squares solution vectors; the residual sum of squares for the +*> solution in each column is given by the sum of squares of +*> elements N+1 to M in that column; +*> if TRANS = 'N' and m < n, rows 1 to N of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'T' and m < n, rows 1 to M of B contain the +*> least squares solution vectors; the residual sum of squares +*> for the solution in each column is given by the sum of +*> squares of elements M+1 to N in that column. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= MAX(1,M,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= max( 1, MN + max( MN, NRHS ) ). +*> For optimal performance, +*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ). +*> where MN = min(M,N) and NB is the optimum block size. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, the i-th diagonal element of the +*> triangular factor of A is zero, so that A does not have +*> full rank; the least squares solution could not be +*> computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup realGEsolve +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2022, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> \endverbatim +* +* ===================================================================== + SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. + REAL A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO, ONE + PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, TPSD + INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS, + $ NB, NBMIN, SCLLEN + REAL ANRM, BIGNUM, BNRM, SMLNUM +* .. +* .. Local Arrays .. + REAL RWORK( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + REAL SLAMCH, SLANGE + EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE +* .. +* .. External Subroutines .. + EXTERNAL SGELQT, SGEQRT, SGEMLQT, SGEMQRT, SLABAD, + $ SLASCL, SLASET, STRTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC REAL, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -8 + ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) + $ THEN + INFO = -10 + END IF +* +* Figure out optimal block size and optimal workspace size +* + IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN +* + TPSD = .TRUE. + IF( LSAME( TRANS, 'N' ) ) + $ TPSD = .FALSE. +* + NB = ILAENV( 1, 'SGELST', ' ', M, N, -1, -1 ) +* + MNNRHS = MAX( MN, NRHS ) + LWOPT = MAX( 1, (MN+MNNRHS)*NB ) + WORK( 1 ) = REAL( LWOPT ) +* + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'SGELST ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + WORK( 1 ) = REAL( LWOPT ) + RETURN + END IF +* +* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N) +* + IF( NB.GT.MN ) NB = MN +* +* Determine the block size from the supplied LWORK +* ( at this stage we know that LWORK >= (minimum required workspace, +* but it may be less than optimal) +* + NB = MIN( NB, LWORK/( MN + MNNRHS ) ) +* +* The minimum value of NB, when blocked code is used +* + NBMIN = MAX( 2, ILAENV( 2, 'SGELST', ' ', M, N, -1, -1 ) ) +* + IF( NB.LT.NBMIN ) THEN + NB = 1 + END IF +* +* Get machine parameters +* + SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL SLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max element outside range [SMLNUM,BIGNUM] +* + ANRM = SLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + WORK( 1 ) = REAL( LWOPT ) + RETURN + END IF +* + BROW = M + IF( TPSD ) + $ BROW = N + BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 2 + END IF +* + IF( M.GE.N ) THEN +* +* M > N: +* Compute the blocked QR factorization of A, +* using the compact WY representation of Q, +* workspace at least N, optimally N*NB. +* + CALL SGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M > N, A is not transposed: +* Overdetermined system of equations, +* least-squares problem, min || A * X - B ||. +* +* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL SGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA, + $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ), + $ INFO ) +* +* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) +* + CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = N +* + ELSE +* +* M > N, A is transposed: +* Underdetermined system of equations, +* minimum norm solution of A**T * X = B. +* +* Compute B := inv(R**T) * B in two row blocks of B. +* +* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) +* + CALL STRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the N-th row in B: +* B(N+1:M,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = N + 1, M + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL SGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = M +* + END IF +* + ELSE +* +* M < N: +* Compute the blocked LQ factorization of A, +* using the compact WY representation of Q, +* workspace at least M, optimally M*NB. +* + CALL SGELQT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M < N, A is not transposed: +* Underdetermined system of equations, +* minimum norm solution of A * X = B. +* +* Compute B := inv(L) * B in two row blocks of B. +* +* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) +* + CALL STRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the M-th row in B: +* B(M+1:N,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = M + 1, N + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL SGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA, + $ WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = N +* + ELSE +* +* M < N, A is transposed: +* Overdetermined system of equations, +* least-squares problem, min || A**T * X - B ||. +* +* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL SGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1), INFO ) +* +* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) +* + CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = M +* + END IF +* + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF +* + WORK( 1 ) = REAL( LWOPT ) +* + RETURN +* +* End of SGELST +* + END diff --git a/SRC/zgelst.f b/SRC/zgelst.f new file mode 100644 index 0000000000..35b73dc454 --- /dev/null +++ b/SRC/zgelst.f @@ -0,0 +1,533 @@ +*> \brief ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ZGELST + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, +* INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. +* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZGELST solves overdetermined or underdetermined real linear systems +*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR +*> or LQ factorization of A with compact WY representation of Q. +*> It is assumed that A has full rank. +*> +*> The following options are provided: +*> +*> 1. If TRANS = 'N' and m >= n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A*X ||. +*> +*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of +*> an underdetermined system A * X = B. +*> +*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of +*> an underdetermined system A**T * X = B. +*> +*> 4. If TRANS = 'C' and m < n: find the least squares solution of +*> an overdetermined system, i.e., solve the least squares problem +*> minimize || B - A**T * X ||. +*> +*> Several right hand side vectors b and solution vectors x can be +*> handled in a single call; they are stored as the columns of the +*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution +*> matrix X. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': the linear system involves A; +*> = 'C': the linear system involves A**H. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of +*> columns of the matrices B and X. NRHS >=0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX*16 array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit, +*> if M >= N, A is overwritten by details of its QR +*> factorization as returned by ZGEQRT; +*> if M < N, A is overwritten by details of its LQ +*> factorization as returned by ZGELQT. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is COMPLEX*16 array, dimension (LDB,NRHS) +*> On entry, the matrix B of right hand side vectors, stored +*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS +*> if TRANS = 'C'. +*> On exit, if INFO = 0, B is overwritten by the solution +*> vectors, stored columnwise: +*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least +*> squares solution vectors; the residual sum of squares for the +*> solution in each column is given by the sum of squares of +*> modulus of elements N+1 to M in that column; +*> if TRANS = 'N' and m < n, rows 1 to N of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the +*> minimum norm solution vectors; +*> if TRANS = 'C' and m < n, rows 1 to M of B contain the +*> least squares solution vectors; the residual sum of squares +*> for the solution in each column is given by the sum of +*> squares of the modulus of elements M+1 to N in that column. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= MAX(1,M,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> LWORK >= max( 1, MN + max( MN, NRHS ) ). +*> For optimal performance, +*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ). +*> where MN = min(M,N) and NB is the optimum block size. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, the i-th diagonal element of the +*> triangular factor of A is zero, so that A does not have +*> full rank; the least squares solution could not be +*> computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup complex16GEsolve +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2022, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> \endverbatim +* +* ===================================================================== + SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) + COMPLEX*16 CZERO + PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, TPSD + INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS, + $ NB, NBMIN, SCLLEN + DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM +* .. +* .. Local Arrays .. + DOUBLE PRECISION RWORK( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, ZLANGE + EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE +* .. +* .. External Subroutines .. + EXTERNAL ZGELQT, ZGEQRT, ZGEMLQT, ZGEMQRT, DLABAD, + $ ZLASCL, ZLASET, ZTRTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -8 + ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) + $ THEN + INFO = -10 + END IF +* +* Figure out optimal block size and optimal workspace size +* + IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN +* + TPSD = .TRUE. + IF( LSAME( TRANS, 'N' ) ) + $ TPSD = .FALSE. +* + NB = ILAENV( 1, 'ZGELST', ' ', M, N, -1, -1 ) +* + MNNRHS = MAX( MN, NRHS ) + LWOPT = MAX( 1, (MN+MNNRHS)*NB ) + WORK( 1 ) = DBLE( LWOPT ) +* + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZGELST ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + WORK( 1 ) = DBLE( LWOPT ) + RETURN + END IF +* +* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N) +* + IF( NB.GT.MN ) NB = MN +* +* Determine the block size from the supplied LWORK +* ( at this stage we know that LWORK >= (minimum required workspace, +* but it may be less than optimal) +* + NB = MIN( NB, LWORK/( MN + MNNRHS ) ) +* +* The minimum value of NB, when blocked code is used +* + NBMIN = MAX( 2, ILAENV( 2, 'ZGELST', ' ', M, N, -1, -1 ) ) +* + IF( NB.LT.NBMIN ) THEN + NB = 1 + END IF +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max element outside range [SMLNUM,BIGNUM] +* + ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + WORK( 1 ) = DBLE( LWOPT ) + RETURN + END IF +* + BROW = M + IF( TPSD ) + $ BROW = N + BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 2 + END IF +* + IF( M.GE.N ) THEN +* +* M > N: +* Compute the blocked QR factorization of A, +* using the compact WY representation of Q, +* workspace at least N, optimally N*NB. +* + CALL ZGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M > N, A is not transposed: +* Overdetermined system of equations, +* least-squares problem, min || A * X - B ||. +* +* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL ZGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* +* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) +* + CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = N +* + ELSE +* +* M > N, A is transposed: +* Underdetermined system of equations, +* minimum norm solution of A**T * X = B. +* +* Compute B := inv(R**T) * B in two row blocks of B. +* +* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) +* + CALL ZTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit', + $ N, NRHS, A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the N-th row in B: +* B(N+1:M,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = N + 1, M + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL ZGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = M +* + END IF +* + ELSE +* +* M < N: +* Compute the blocked LQ factorization of A, +* using the compact WY representation of Q, +* workspace at least M, optimally M*NB. +* + CALL ZGELQT( M, N, NB, A, LDA, WORK( 1 ), NB, + $ WORK( MN*NB+1 ), INFO ) +* + IF( .NOT.TPSD ) THEN +* +* M < N, A is not transposed: +* Underdetermined system of equations, +* minimum norm solution of A * X = B. +* +* Compute B := inv(L) * B in two row blocks of B. +* +* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) +* + CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* Block 2: Zero out all rows below the M-th row in B: +* B(M+1:N,1:NRHS) = ZERO +* + DO J = 1, NRHS + DO I = M + 1, N + B( I, J ) = ZERO + END DO + END DO +* +* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL ZGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1 ), INFO ) +* + SCLLEN = N +* + ELSE +* +* M < N, A is transposed: +* Overdetermined system of equations, +* least-squares problem, min || A**T * X - B ||. +* +* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), +* using the compact WY representation of Q, +* workspace at least NRHS, optimally NRHS*NB. +* + CALL ZGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB, + $ A, LDA, WORK( 1 ), NB, B, LDB, + $ WORK( MN*NB+1), INFO ) +* +* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) +* + CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit', + $ M, NRHS, A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = M +* + END IF +* + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF +* + WORK( 1 ) = DBLE( LWOPT ) +* + RETURN +* +* End of ZGELST +* + END diff --git a/TESTING/LIN/alahd.f b/TESTING/LIN/alahd.f index 2cc0fba063..f0423a23b9 100644 --- a/TESTING/LIN/alahd.f +++ b/TESTING/LIN/alahd.f @@ -608,17 +608,18 @@ SUBROUTINE ALAHD( IOUNIT, PATH ) ELSE IF( LSAMEN( 2, P2, 'LS' ) ) THEN * * LS: Least Squares driver routines for -* LS, LSD, LSS, LSX and LSY. +* LS, LST, TSLS, LSD, LSS, LSX and LSY. * WRITE( IOUNIT, FMT = 9984 )PATH WRITE( IOUNIT, FMT = 9967 ) - WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1 + WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1, C1, C1 WRITE( IOUNIT, FMT = 9935 )1 WRITE( IOUNIT, FMT = 9931 )2 - WRITE( IOUNIT, FMT = 9933 )3 - WRITE( IOUNIT, FMT = 9935 )4 - WRITE( IOUNIT, FMT = 9934 )5 - WRITE( IOUNIT, FMT = 9932 )6 + WRITE( IOUNIT, FMT = 9919 ) + WRITE( IOUNIT, FMT = 9933 )7 + WRITE( IOUNIT, FMT = 9935 )8 + WRITE( IOUNIT, FMT = 9934 )9 + WRITE( IOUNIT, FMT = 9932 )10 WRITE( IOUNIT, FMT = 9920 ) WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * @@ -1048,10 +1049,11 @@ SUBROUTINE ALAHD( IOUNIT, PATH ) $ 'check if X is in the row space of A or A'' ', $ '(overdetermined case)' ) 9929 FORMAT( ' Test ratios (1-3: ', A1, 'TZRZF):' ) - 9920 FORMAT( 3X, ' 7-10: same as 3-6', 3X, ' 11-14: same as 3-6' ) - 9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-6: ', A1, - $ 'GELSY, 7-10: ', A1, 'GELSS, 11-14: ', A1, 'GELSD, 15-16: ', - $ A1, 'GETSLS)') + 9919 FORMAT( 3X, ' 3-4: same as 1-2', 3X, ' 5-6: same as 1-2' ) + 9920 FORMAT( 3X, ' 11-14: same as 7-10', 3X, ' 15-18: same as 7-10' ) + 9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-4: ', A1, + $ 'GELST, 5-6: ', A1, 'GETSLS, 7-10: ', A1, 'GELSY, 11-14: ', + $ A1, 'GETSS, 15-18: ', A1, 'GELSD)' ) 9928 FORMAT( 7X, 'where ALPHA = ( 1 + SQRT( 17 ) ) / 8' ) 9927 FORMAT( 3X, I2, ': ABS( Largest element in L )', / 12X, $ ' - ( 1 / ( 1 - ALPHA ) ) + THRESH' ) diff --git a/TESTING/LIN/cdrvls.f b/TESTING/LIN/cdrvls.f index 7fe189e5fd..ecba705d5f 100644 --- a/TESTING/LIN/cdrvls.f +++ b/TESTING/LIN/cdrvls.f @@ -31,7 +31,8 @@ *> *> \verbatim *> -*> CDRVLS tests the least squares driver routines CGELS, CGETSLS, CGELSS, CGELSY +*> CDRVLS tests the least squares driver routines CGELS, CGELST, +*> CGETSLS, CGELSS, CGELSY *> and CGELSD. *> \endverbatim * @@ -211,7 +212,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * .. Parameters .. INTEGER NTESTS - PARAMETER ( NTESTS = 16 ) + PARAMETER ( NTESTS = 18 ) INTEGER SMLSIZ PARAMETER ( SMLSIZ = 25 ) REAL ONE, ZERO @@ -228,8 +229,8 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, $ NFAIL, NRHS, NROWS, NRUN, RANK, MB, $ MMAX, NMAX, NSMAX, LIWORK, LRWORK, - $ LWORK_CGELS, LWORK_CGETSLS, LWORK_CGELSS, - $ LWORK_CGELSY, LWORK_CGELSD, + $ LWORK_CGELS, LWORK_CGELST, LWORK_CGETSLS, + $ LWORK_CGELSS, LWORK_CGELSY, LWORK_CGELSD, $ LRWORK_CGELSY, LRWORK_CGELSS, LRWORK_CGELSD REAL EPS, NORMA, NORMB, RCOND * .. @@ -249,7 +250,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASVM, CERRLS, CGELS, CGELSD, - $ CGELSS, CGELSY, CGEMM, CGETSLS, CLACPY, + $ CGELSS, CGELST, CGELSY, CGEMM, CGETSLS, CLACPY, $ CLARNV, CQRT13, CQRT15, CQRT16, CSSCAL, $ SAXPY, XLAENV * .. @@ -334,7 +335,8 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, LIWORK = 1 * * Iterate through all test cases and compute necessary workspace -* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines. +* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD +* routines. * DO IM = 1, NM M = MVAL( IM ) @@ -361,6 +363,10 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL CGELS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) LWORK_CGELS = INT( WQ( 1 ) ) +* Compute workspace needed for CGELST + CALL CGELST( TRANS, M, N, NRHS, A, LDA, + $ B, LDB, WQ, -1, INFO ) + LWORK_CGELST = INT ( WQ ( 1 ) ) * Compute workspace needed for CGETSLS CALL CGETSLS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) @@ -425,21 +431,26 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, ITYPE = ( IRANK-1 )*3 + ISCALE IF( .NOT.DOTYPE( ITYPE ) ) $ GO TO 100 -* +* ===================================================== +* Begin test CGELS +* ===================================================== IF( IRANK.EQ.1 ) THEN * -* Test CGELS -* * Generate a matrix of scaling type ISCALE * CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 40 INB = 1, NNB +* +* Loop for testing different block sizes. +* + DO INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * - DO 30 ITRAN = 1, 2 +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -484,15 +495,20 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 1: Check correctness of results +* for CGELS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL CLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL CQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, RWORK, $ RESULT( 1 ) ) +* +* Test 2: Check correctness of results +* for CGELS. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN @@ -515,7 +531,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 20 K = 1, 2 + DO K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) @@ -524,26 +540,34 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 20 CONTINUE + END DO NRUN = NRUN + 2 - 30 CONTINUE - 40 CONTINUE -* -* -* Test CGETSLS + END DO + END DO + END IF +* ===================================================== +* End test CGELS +* ===================================================== +* ===================================================== +* Begin test CGELST +* ===================================================== + IF( IRANK.EQ.1 ) THEN * * Generate a matrix of scaling type ISCALE * CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 65 INB = 1, NNB - MB = NBVAL( INB ) - CALL XLAENV( 1, MB ) - DO 62 IMB = 1, NNB - NB = NBVAL( IMB ) - CALL XLAENV( 2, NB ) * - DO 60 ITRAN = 1, 2 +* Loop for testing different block sizes. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 1, NB ) + CALL XLAENV( 3, NXVAL( INB ) ) +* +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -560,9 +584,9 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, IF( NCOLS.GT.0 ) THEN CALL CLARNV( 2, ISEED, NCOLS*NRHS, $ WORK ) - CALL CSCAL( NCOLS*NRHS, - $ CONE / REAL( NCOLS ), WORK, - $ 1 ) + CALL CSSCAL( NCOLS*NRHS, + $ ONE / REAL( NCOLS ), WORK, + $ 1 ) END IF CALL CGEMM( TRANS, 'No transpose', NROWS, $ NRHS, NCOLS, CONE, COPYA, LDA, @@ -578,31 +602,37 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL CLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, B, LDB ) END IF - SRNAMT = 'CGETSLS ' - CALL CGETSLS( TRANS, M, N, NRHS, A, - $ LDA, B, LDB, WORK, LWORK, INFO ) + SRNAMT = 'CGELST' + CALL CGELST( TRANS, M, N, NRHS, A, LDA, B, + $ LDB, WORK, LWORK, INFO ) +* IF( INFO.NE.0 ) - $ CALL ALAERH( PATH, 'CGETSLS ', INFO, 0, + $ CALL ALAERH( PATH, 'CGELST', INFO, 0, $ TRANS, M, N, NRHS, -1, NB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 3: Check correctness of results +* for CGELST, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL CLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL CQRT16( TRANS, M, N, NRHS, COPYA, - $ LDA, B, LDB, C, LDB, WORK2, - $ RESULT( 15 ) ) + $ LDA, B, LDB, C, LDB, RWORK, + $ RESULT( 3 ) ) +* +* Test 4: Check correctness of results +* for CGELST. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * * Solving LS system * - RESULT( 16 ) = CQRT17( TRANS, 1, M, N, + RESULT( 4 ) = CQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, $ LWORK ) @@ -610,7 +640,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * Solving overdetermined system * - RESULT( 16 ) = CQRT14( TRANS, M, N, + RESULT( 4 ) = CQRT14( TRANS, M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) END IF @@ -618,21 +648,151 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 50 K = 15, 16 + DO K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) - WRITE( NOUT, FMT = 9997 )TRANS, M, - $ N, NRHS, MB, NB, ITYPE, K, + WRITE( NOUT, FMT = 9999 )TRANS, M, + $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 50 CONTINUE + END DO NRUN = NRUN + 2 - 60 CONTINUE - 62 CONTINUE - 65 CONTINUE + END DO + END DO + END IF +* ===================================================== +* End test CGELST +* ===================================================== +* ===================================================== +* Begin test CGELSTSLS +* ===================================================== + IF( IRANK.EQ.1 ) THEN +* +* Generate a matrix of scaling type ISCALE +* + CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA, + $ ISEED ) +* +* Loop for testing different block sizes MB. +* + DO INB = 1, NNB + MB = NBVAL( INB ) + CALL XLAENV( 1, MB ) +* +* Loop for testing different block sizes NB. +* + DO IMB = 1, NNB + NB = NBVAL( IMB ) + CALL XLAENV( 2, NB ) +* +* Loop for testing non-transposed +* and transposed. +* + DO ITRAN = 1, 2 + IF( ITRAN.EQ.1 ) THEN + TRANS = 'N' + NROWS = M + NCOLS = N + ELSE + TRANS = 'C' + NROWS = N + NCOLS = M + END IF + LDWORK = MAX( 1, NCOLS ) +* +* Set up a consistent rhs +* + IF( NCOLS.GT.0 ) THEN + CALL CLARNV( 2, ISEED, NCOLS*NRHS, + $ WORK ) + CALL CSCAL( NCOLS*NRHS, + $ CONE / REAL( NCOLS ), + $ WORK, 1 ) + END IF + CALL CGEMM( TRANS, 'No transpose', + $ NROWS, NRHS, NCOLS, CONE, + $ COPYA, LDA, WORK, LDWORK, + $ CZERO, B, LDB ) + CALL CLACPY( 'Full', NROWS, NRHS, + $ B, LDB, COPYB, LDB ) +* +* Solve LS or overdetermined system +* + IF( M.GT.0 .AND. N.GT.0 ) THEN + CALL CLACPY( 'Full', M, N, + $ COPYA, LDA, A, LDA ) + CALL CLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, B, LDB ) + END IF + SRNAMT = 'CGETSLS ' + CALL CGETSLS( TRANS, M, N, NRHS, A, + $ LDA, B, LDB, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) + $ CALL ALAERH( PATH, 'CGETSLS ', INFO, + $ 0, TRANS, M, N, NRHS, + $ -1, NB, ITYPE, NFAIL, + $ NERRS, NOUT ) +* +* Test 5: Check correctness of results +* for CGETSLS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) +* + IF( NROWS.GT.0 .AND. NRHS.GT.0 ) + $ CALL CLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, C, LDB ) + CALL CQRT16( TRANS, M, N, NRHS, + $ COPYA, LDA, B, LDB, + $ C, LDB, WORK2, + $ RESULT( 5 ) ) +* +* Test 6: Check correctness of results +* for CGETSLS. +* + IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. + $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN +* +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) +* + RESULT( 6 ) = CQRT17( TRANS, 1, M, + $ N, NRHS, COPYA, LDA, + $ B, LDB, COPYB, LDB, + $ C, WORK, LWORK ) + ELSE +* +* Solving overdetermined system +* + RESULT( 6 ) = CQRT14( TRANS, M, N, + $ NRHS, COPYA, LDA, B, + $ LDB, WORK, LWORK ) + END IF +* +* Print information about the tests that +* did not pass the threshold. +* + DO K = 5, 6 + IF( RESULT( K ).GE.THRESH ) THEN + IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) + $ CALL ALAHD( NOUT, PATH ) + WRITE( NOUT, FMT = 9997 )TRANS, + $ M, N, NRHS, MB, NB, ITYPE, K, + $ RESULT( K ) + NFAIL = NFAIL + 1 + END IF + END DO + NRUN = NRUN + 2 + END DO + END DO + END DO END IF +* ===================================================== +* End test CGELSTSLS +* ==================================================== * * Generate a matrix of scaling type ISCALE and rank * type IRANK. @@ -680,37 +840,37 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS) * -* Test 3: Compute relative error in svd +* Test 7: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * - RESULT( 3 ) = CQRT12( CRANK, CRANK, A, LDA, + RESULT( 7 ) = CQRT12( CRANK, CRANK, A, LDA, $ COPYS, WORK, LWORK, RWORK ) * -* Test 4: Compute error in solution +* Test 8: Compute error in solution * workspace: M*NRHS + M * CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL CQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 4 ) ) + $ RESULT( 8 ) ) * -* Test 5: Check norm of r'*A +* Test 9: Check norm of r'*A * workspace: NRHS*(M+N) * - RESULT( 5 ) = ZERO + RESULT( 9 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 5 ) = CQRT17( 'No transpose', 1, M, + $ RESULT( 9 ) = CQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 6: Check if x is in the rowspace of A +* Test 10: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * - RESULT( 6 ) = ZERO + RESULT( 10 ) = ZERO * IF( N.GT.CRANK ) - $ RESULT( 6 ) = CQRT14( 'No transpose', M, N, + $ RESULT( 10 ) = CQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -736,38 +896,38 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * workspace used: 3*min(m,n) + * max(2*min(m,n),nrhs,max(m,n)) * -* Test 7: Compute relative error in svd +* Test 11: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 7 ) = SASUM( MNMIN, S, 1 ) / + RESULT( 11 ) = SASUM( MNMIN, S, 1 ) / $ SASUM( MNMIN, COPYS, 1 ) / $ ( EPS*REAL( MNMIN ) ) ELSE - RESULT( 7 ) = ZERO + RESULT( 11 ) = ZERO END IF * -* Test 8: Compute error in solution +* Test 12: Compute error in solution * CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL CQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 8 ) ) + $ RESULT( 12 ) ) * -* Test 9: Check norm of r'*A +* Test 13: Check norm of r'*A * - RESULT( 9 ) = ZERO + RESULT( 13 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 9 ) = CQRT17( 'No transpose', 1, M, + $ RESULT( 13 ) = CQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 10: Check if x is in the rowspace of A +* Test 14: Check if x is in the rowspace of A * - RESULT( 10 ) = ZERO + RESULT( 14 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 10 ) = CQRT14( 'No transpose', M, N, + $ RESULT( 14 ) = CQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -792,45 +952,45 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 11: Compute relative error in svd +* Test 15: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 11 ) = SASUM( MNMIN, S, 1 ) / + RESULT( 15 ) = SASUM( MNMIN, S, 1 ) / $ SASUM( MNMIN, COPYS, 1 ) / $ ( EPS*REAL( MNMIN ) ) ELSE - RESULT( 11 ) = ZERO + RESULT( 15 ) = ZERO END IF * -* Test 12: Compute error in solution +* Test 16: Compute error in solution * CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL CQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 12 ) ) + $ RESULT( 16 ) ) * -* Test 13: Check norm of r'*A +* Test 17: Check norm of r'*A * - RESULT( 13 ) = ZERO + RESULT( 17 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 13 ) = CQRT17( 'No transpose', 1, M, + $ RESULT( 17 ) = CQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 14: Check if x is in the rowspace of A +* Test 18: Check if x is in the rowspace of A * - RESULT( 14 ) = ZERO + RESULT( 18 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 14 ) = CQRT14( 'No transpose', M, N, + $ RESULT( 18 ) = CQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Print information about the tests that did not * pass the threshold. * - DO 80 K = 3, 14 + DO 80 K = 7, 18 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) diff --git a/TESTING/LIN/cerrls.f b/TESTING/LIN/cerrls.f index 48e44ad863..fca9439181 100644 --- a/TESTING/LIN/cerrls.f +++ b/TESTING/LIN/cerrls.f @@ -22,7 +22,7 @@ *> \verbatim *> *> CERRLS tests the error exits for the COMPLEX least squares -*> driver routines (CGELS, CGELSS, CGELSY, CGELSD). +*> driver routines (CGELS, CGELST, CGETSLS, CGELSS, CGELSY, CGELSD). *> \endverbatim * * Arguments: @@ -83,7 +83,8 @@ SUBROUTINE CERRLS( PATH, NUNIT ) EXTERNAL LSAMEN * .. * .. External Subroutines .. - EXTERNAL ALAESM, CGELS, CGELSD, CGELSS, CGELSY, CHKXER + EXTERNAL ALAESM, CHKXER, CGELS, CGELSD, CGELSS, CGELST, + $ CGELSY, CGETSLS * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -130,10 +131,66 @@ SUBROUTINE CERRLS( PATH, NUNIT ) INFOT = 8 CALL CGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL CGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'CGELS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK ) * +* CGELST +* + SRNAMT = 'CGELST' + INFOT = 1 + CALL CGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL CGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL CGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL CGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL CGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL CGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL CGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) + INFOT = 10 + CALL CGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK ) +* +* CGETSLS +* + SRNAMT = 'CGETSLS' + INFOT = 1 + CALL CGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL CGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL CGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL CGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL CGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL CGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL CGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK ) +* * CGELSS * SRNAMT = 'CGELSS' diff --git a/TESTING/LIN/ddrvls.f b/TESTING/LIN/ddrvls.f index b64930c10c..b3d07d67f2 100644 --- a/TESTING/LIN/ddrvls.f +++ b/TESTING/LIN/ddrvls.f @@ -31,8 +31,8 @@ *> *> \verbatim *> -*> DDRVLS tests the least squares driver routines DGELS, DGETSLS, DGELSS, DGELSY, -*> and DGELSD. +*> DDRVLS tests the least squares driver routines DGELS, DGELST, +*> DGETSLS, DGELSS, DGELSY, and DGELSD. *> \endverbatim * * Arguments: @@ -211,7 +211,7 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * .. Parameters .. INTEGER NTESTS - PARAMETER ( NTESTS = 16 ) + PARAMETER ( NTESTS = 18 ) INTEGER SMLSIZ PARAMETER ( SMLSIZ = 25 ) DOUBLE PRECISION ONE, TWO, ZERO @@ -225,8 +225,8 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, $ NFAIL, NRHS, NROWS, NRUN, RANK, MB, $ MMAX, NMAX, NSMAX, LIWORK, - $ LWORK_DGELS, LWORK_DGETSLS, LWORK_DGELSS, - $ LWORK_DGELSY, LWORK_DGELSD + $ LWORK_DGELS, LWORK_DGELST, LWORK_DGETSLS, + $ LWORK_DGELSS, LWORK_DGELSY, LWORK_DGELSD DOUBLE PRECISION EPS, NORMA, NORMB, RCOND * .. * .. Local Arrays .. @@ -243,12 +243,12 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS, - $ DGELSD, DGELSS, DGELSY, DGEMM, DLACPY, - $ DLARNV, DLASRT, DQRT13, DQRT15, DQRT16, DSCAL, - $ XLAENV + $ DGELSD, DGELSS, DGELST, DGELSY, DGEMM, + $ DGETSLS, DLACPY, DLARNV, DQRT13, DQRT15, + $ DQRT16, DSCAL, XLAENV * .. * .. Intrinsic Functions .. - INTRINSIC DBLE, INT, LOG, MAX, MIN, SQRT + INTRINSIC DBLE, INT, MAX, MIN, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -330,7 +330,8 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, LIWORK = 1 * * Iterate through all test cases and compute necessary workspace -* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines. +* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD +* routines. * DO IM = 1, NM M = MVAL( IM ) @@ -357,6 +358,10 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL DGELS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) LWORK_DGELS = INT ( WQ ( 1 ) ) +* Compute workspace needed for DGELST + CALL DGELST( TRANS, M, N, NRHS, A, LDA, + $ B, LDB, WQ, -1, INFO ) + LWORK_DGELST = INT ( WQ ( 1 ) ) * Compute workspace needed for DGETSLS CALL DGETSLS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) @@ -378,9 +383,9 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Compute LIWORK workspace needed for DGELSY and DGELSD LIWORK = MAX( LIWORK, N, IWQ( 1 ) ) * Compute LWORK workspace needed for all functions - LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGETSLS, - $ LWORK_DGELSY, LWORK_DGELSS, - $ LWORK_DGELSD ) + LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGELST, + $ LWORK_DGETSLS, LWORK_DGELSY, + $ LWORK_DGELSS, LWORK_DGELSD ) END IF ENDDO ENDDO @@ -411,21 +416,26 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, ITYPE = ( IRANK-1 )*3 + ISCALE IF( .NOT.DOTYPE( ITYPE ) ) $ GO TO 110 -* +* ===================================================== +* Begin test DGELS +* ===================================================== IF( IRANK.EQ.1 ) THEN * -* Test DGELS -* * Generate a matrix of scaling type ISCALE * CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 40 INB = 1, NNB +* +* Loop for testing different block sizes. +* + DO INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * - DO 30 ITRAN = 1, 2 +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -469,20 +479,27 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 1: Check correctness of results +* for DGELS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL DLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL DQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, WORK, $ RESULT( 1 ) ) +* +* Test 2: Check correctness of results +* for DGELS. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * -* Solving LS system +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) * RESULT( 2 ) = DQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, @@ -500,35 +517,42 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 20 K = 1, 2 + DO K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) - WRITE( NOUT, FMT = 9999 )TRANS, M, + WRITE( NOUT, FMT = 9999 ) TRANS, M, $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 20 CONTINUE + END DO NRUN = NRUN + 2 - 30 CONTINUE - 40 CONTINUE -* -* -* Test DGETSLS + END DO + END DO + END IF +* ===================================================== +* End test DGELS +* ===================================================== +* ===================================================== +* Begin test DGELST +* ===================================================== + IF( IRANK.EQ.1 ) THEN * * Generate a matrix of scaling type ISCALE * CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 65 INB = 1, NNB - MB = NBVAL( INB ) - CALL XLAENV( 1, MB ) - DO 62 IMB = 1, NNB - NB = NBVAL( IMB ) - CALL XLAENV( 2, NB ) * - DO 60 ITRAN = 1, 2 +* Loop for testing different block sizes. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 1, NB ) +* +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -563,31 +587,38 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL DLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, B, LDB ) END IF - SRNAMT = 'DGETSLS ' - CALL DGETSLS( TRANS, M, N, NRHS, A, - $ LDA, B, LDB, WORK, LWORK, INFO ) + SRNAMT = 'DGELST' + CALL DGELST( TRANS, M, N, NRHS, A, LDA, B, + $ LDB, WORK, LWORK, INFO ) IF( INFO.NE.0 ) - $ CALL ALAERH( PATH, 'DGETSLS ', INFO, 0, + $ CALL ALAERH( PATH, 'DGELST', INFO, 0, $ TRANS, M, N, NRHS, -1, NB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 3: Check correctness of results +* for DGELST, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL DLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL DQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, WORK, - $ RESULT( 15 ) ) + $ RESULT( 3 ) ) +* +* Test 4: Check correctness of results +* for DGELST. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * -* Solving LS system +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) * - RESULT( 16 ) = DQRT17( TRANS, 1, M, N, + RESULT( 4 ) = DQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, $ LWORK ) @@ -595,7 +626,7 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * Solving overdetermined system * - RESULT( 16 ) = DQRT14( TRANS, M, N, + RESULT( 4 ) = DQRT14( TRANS, M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) END IF @@ -603,21 +634,151 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 50 K = 15, 16 + DO K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) - WRITE( NOUT, FMT = 9997 )TRANS, M, - $ N, NRHS, MB, NB, ITYPE, K, + WRITE( NOUT, FMT = 9999 ) TRANS, M, + $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 50 CONTINUE + END DO NRUN = NRUN + 2 - 60 CONTINUE - 62 CONTINUE - 65 CONTINUE + END DO + END DO + END IF +* ===================================================== +* End test DGELST +* ===================================================== +* ===================================================== +* Begin test DGETSLS +* ===================================================== + IF( IRANK.EQ.1 ) THEN +* +* Generate a matrix of scaling type ISCALE +* + CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA, + $ ISEED ) +* +* Loop for testing different block sizes MB. +* + DO IMB = 1, NNB + MB = NBVAL( IMB ) + CALL XLAENV( 1, MB ) +* +* Loop for testing different block sizes NB. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 2, NB ) +* +* Loop for testing non-transposed +* and transposed. +* + DO ITRAN = 1, 2 + IF( ITRAN.EQ.1 ) THEN + TRANS = 'N' + NROWS = M + NCOLS = N + ELSE + TRANS = 'T' + NROWS = N + NCOLS = M + END IF + LDWORK = MAX( 1, NCOLS ) +* +* Set up a consistent rhs +* + IF( NCOLS.GT.0 ) THEN + CALL DLARNV( 2, ISEED, NCOLS*NRHS, + $ WORK ) + CALL DSCAL( NCOLS*NRHS, + $ ONE / DBLE( NCOLS ), + $ WORK, 1 ) + END IF + CALL DGEMM( TRANS, 'No transpose', + $ NROWS, NRHS, NCOLS, ONE, + $ COPYA, LDA, WORK, LDWORK, + $ ZERO, B, LDB ) + CALL DLACPY( 'Full', NROWS, NRHS, + $ B, LDB, COPYB, LDB ) +* +* Solve LS or overdetermined system +* + IF( M.GT.0 .AND. N.GT.0 ) THEN + CALL DLACPY( 'Full', M, N, + $ COPYA, LDA, A, LDA ) + CALL DLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, B, LDB ) + END IF + SRNAMT = 'DGETSLS' + CALL DGETSLS( TRANS, M, N, NRHS, + $ A, LDA, B, LDB, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) + $ CALL ALAERH( PATH, 'DGETSLS', INFO, + $ 0, TRANS, M, N, NRHS, + $ -1, NB, ITYPE, NFAIL, + $ NERRS, NOUT ) +* +* Test 5: Check correctness of results +* for DGETSLS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) +* + IF( NROWS.GT.0 .AND. NRHS.GT.0 ) + $ CALL DLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, C, LDB ) + CALL DQRT16( TRANS, M, N, NRHS, + $ COPYA, LDA, B, LDB, + $ C, LDB, WORK, + $ RESULT( 5 ) ) +* +* Test 6: Check correctness of results +* for DGETSLS. +* + IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. + $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN +* +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) +* + RESULT( 6 ) = DQRT17( TRANS, 1, M, + $ N, NRHS, COPYA, LDA, + $ B, LDB, COPYB, LDB, + $ C, WORK, LWORK ) + ELSE +* +* Solving overdetermined system +* + RESULT( 6 ) = DQRT14( TRANS, M, N, + $ NRHS, COPYA, LDA, + $ B, LDB, WORK, LWORK ) + END IF +* +* Print information about the tests that +* did not pass the threshold. +* + DO K = 5, 6 + IF( RESULT( K ).GE.THRESH ) THEN + IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) + $ CALL ALAHD( NOUT, PATH ) + WRITE( NOUT, FMT = 9997 ) TRANS, + $ M, N, NRHS, MB, NB, ITYPE, + $ K, RESULT( K ) + NFAIL = NFAIL + 1 + END IF + END DO + NRUN = NRUN + 2 + END DO + END DO + END DO END IF +* ===================================================== +* End test DGETSLS +* ===================================================== * * Generate a matrix of scaling type ISCALE and rank * type IRANK. @@ -662,37 +823,37 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 3: Compute relative error in svd +* Test 7: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * - RESULT( 3 ) = DQRT12( CRANK, CRANK, A, LDA, + RESULT( 7 ) = DQRT12( CRANK, CRANK, A, LDA, $ COPYS, WORK, LWORK ) * -* Test 4: Compute error in solution +* Test 8: Compute error in solution * workspace: M*NRHS + M * CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL DQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 4 ) ) + $ WORK( M*NRHS+1 ), RESULT( 8 ) ) * -* Test 5: Check norm of r'*A +* Test 9: Check norm of r'*A * workspace: NRHS*(M+N) * - RESULT( 5 ) = ZERO + RESULT( 9 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 5 ) = DQRT17( 'No transpose', 1, M, + $ RESULT( 9 ) = DQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 6: Check if x is in the rowspace of A +* Test 10: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * - RESULT( 6 ) = ZERO + RESULT( 10 ) = ZERO * IF( N.GT.CRANK ) - $ RESULT( 6 ) = DQRT14( 'No transpose', M, N, + $ RESULT( 10 ) = DQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -716,38 +877,38 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * workspace used: 3*min(m,n) + * max(2*min(m,n),nrhs,max(m,n)) * -* Test 7: Compute relative error in svd +* Test 11: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 7 ) = DASUM( MNMIN, S, 1 ) / + RESULT( 11 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE - RESULT( 7 ) = ZERO + RESULT( 11 ) = ZERO END IF * -* Test 8: Compute error in solution +* Test 12: Compute error in solution * CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL DQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 8 ) ) + $ WORK( M*NRHS+1 ), RESULT( 12 ) ) * -* Test 9: Check norm of r'*A +* Test 13: Check norm of r'*A * - RESULT( 9 ) = ZERO + RESULT( 13 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 9 ) = DQRT17( 'No transpose', 1, M, + $ RESULT( 13 ) = DQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 10: Check if x is in the rowspace of A +* Test 14: Check if x is in the rowspace of A * - RESULT( 10 ) = ZERO + RESULT( 14 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 10 ) = DQRT14( 'No transpose', M, N, + $ RESULT( 14 ) = DQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -776,45 +937,45 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 11: Compute relative error in svd +* Test 15: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 11 ) = DASUM( MNMIN, S, 1 ) / + RESULT( 15 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE - RESULT( 11 ) = ZERO + RESULT( 15 ) = ZERO END IF * -* Test 12: Compute error in solution +* Test 16: Compute error in solution * CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL DQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 12 ) ) + $ WORK( M*NRHS+1 ), RESULT( 16 ) ) * -* Test 13: Check norm of r'*A +* Test 17: Check norm of r'*A * - RESULT( 13 ) = ZERO + RESULT( 17 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 13 ) = DQRT17( 'No transpose', 1, M, + $ RESULT( 17 ) = DQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 14: Check if x is in the rowspace of A +* Test 18: Check if x is in the rowspace of A * - RESULT( 14 ) = ZERO + RESULT( 18 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 14 ) = DQRT14( 'No transpose', M, N, + $ RESULT( 18 ) = DQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Print information about the tests that did not * pass the threshold. * - DO 90 K = 3, 14 + DO 90 K = 7, 18 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) @@ -826,6 +987,12 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, NRUN = NRUN + 12 * 100 CONTINUE + + + + + + 110 CONTINUE 120 CONTINUE 130 CONTINUE diff --git a/TESTING/LIN/derrls.f b/TESTING/LIN/derrls.f index a1f74dec23..09d745238e 100644 --- a/TESTING/LIN/derrls.f +++ b/TESTING/LIN/derrls.f @@ -22,7 +22,7 @@ *> \verbatim *> *> DERRLS tests the error exits for the DOUBLE PRECISION least squares -*> driver routines (DGELS, SGELSS, SGELSY, SGELSD). +*> driver routines (DGELS, DGELST, DGETSLS, SGELSS, SGELSY, SGELSD). *> \endverbatim * * Arguments: @@ -83,7 +83,8 @@ SUBROUTINE DERRLS( PATH, NUNIT ) EXTERNAL LSAMEN * .. * .. External Subroutines .. - EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELSY + EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELST, + $ DGELSY, DGETSLS * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -130,10 +131,66 @@ SUBROUTINE DERRLS( PATH, NUNIT ) INFOT = 8 CALL DGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL DGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK ) * +* DGELST +* + SRNAMT = 'DGELST' + INFOT = 1 + CALL DGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL DGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL DGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL DGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL DGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL DGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL DGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) + INFOT = 10 + CALL DGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK ) +* +* DGETSLS +* + SRNAMT = 'DGETSLS' + INFOT = 1 + CALL DGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL DGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL DGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL DGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL DGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL DGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL DGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK ) +* * DGELSS * SRNAMT = 'DGELSS' diff --git a/TESTING/LIN/sdrvls.f b/TESTING/LIN/sdrvls.f index b964515037..2baf9a3fb1 100644 --- a/TESTING/LIN/sdrvls.f +++ b/TESTING/LIN/sdrvls.f @@ -31,8 +31,8 @@ *> *> \verbatim *> -*> SDRVLS tests the least squares driver routines SGELS, SGETSLS, SGELSS, SGELSY, -*> and SGELSD. +*> SDRVLS tests the least squares driver routines SGELS, SGELST, +*> SGETSLS, SGELSS, SGELSY and SGELSD. *> \endverbatim * * Arguments: @@ -211,7 +211,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * .. Parameters .. INTEGER NTESTS - PARAMETER ( NTESTS = 16 ) + PARAMETER ( NTESTS = 18 ) INTEGER SMLSIZ PARAMETER ( SMLSIZ = 25 ) REAL ONE, TWO, ZERO @@ -225,8 +225,8 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, $ NFAIL, NRHS, NROWS, NRUN, RANK, MB, $ MMAX, NMAX, NSMAX, LIWORK, - $ LWORK_SGELS, LWORK_SGETSLS, LWORK_SGELSS, - $ LWORK_SGELSY, LWORK_SGELSD + $ LWORK_SGELS, LWORK_SGELST, LWORK_SGETSLS, + $ LWORK_SGELSS, LWORK_SGELSY, LWORK_SGELSD REAL EPS, NORMA, NORMB, RCOND * .. * .. Local Arrays .. @@ -243,12 +243,12 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS, - $ SGELSD, SGELSS, SGELSY, SGEMM, SLACPY, - $ SLARNV, SQRT13, SQRT15, SQRT16, SSCAL, - $ XLAENV, SGETSLS + $ SGELSD, SGELSS, SGELST, SGELSY, SGEMM, + $ SGETSLS, SLACPY, SLARNV, SQRT13, SQRT15, + $ SQRT16, SSCAL, XLAENV * .. * .. Intrinsic Functions .. - INTRINSIC INT, LOG, MAX, MIN, REAL, SQRT + INTRINSIC INT, MAX, MIN, REAL, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -330,7 +330,8 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, LIWORK = 1 * * Iterate through all test cases and compute necessary workspace -* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines. +* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD +* routines. * DO IM = 1, NM M = MVAL( IM ) @@ -357,6 +358,10 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL SGELS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ( 1 ), -1, INFO ) LWORK_SGELS = INT ( WQ( 1 ) ) +* Compute workspace needed for SGELST + CALL SGELST( TRANS, M, N, NRHS, A, LDA, + $ B, LDB, WQ, -1, INFO ) + LWORK_SGELST = INT ( WQ ( 1 ) ) * Compute workspace needed for SGETSLS CALL SGETSLS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ( 1 ), -1, INFO ) @@ -378,9 +383,9 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Compute LIWORK workspace needed for SGELSY and SGELSD LIWORK = MAX( LIWORK, N, IWQ( 1 ) ) * Compute LWORK workspace needed for all functions - LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGETSLS, - $ LWORK_SGELSY, LWORK_SGELSS, - $ LWORK_SGELSD ) + LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGELST, + $ LWORK_SGETSLS, LWORK_SGELSY, + $ LWORK_SGELSS, LWORK_SGELSD ) END IF ENDDO ENDDO @@ -411,21 +416,26 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, ITYPE = ( IRANK-1 )*3 + ISCALE IF( .NOT.DOTYPE( ITYPE ) ) $ GO TO 110 -* +* ===================================================== +* Begin test SGELS +* ===================================================== IF( IRANK.EQ.1 ) THEN * -* Test SGELS -* * Generate a matrix of scaling type ISCALE * CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 40 INB = 1, NNB +* +* Loop for testing different block sizes. +* + DO INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * - DO 30 ITRAN = 1, 2 +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -469,20 +479,27 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 1: Check correctness of results +* for SGELS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL SLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL SQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, WORK, $ RESULT( 1 ) ) +* +* Test 2: Check correctness of results +* for SGELS. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * -* Solving LS system +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) * RESULT( 2 ) = SQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, @@ -500,7 +517,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 20 K = 1, 2 + DO K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) @@ -509,26 +526,33 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 20 CONTINUE + END DO NRUN = NRUN + 2 - 30 CONTINUE - 40 CONTINUE -* -* -* Test SGETSLS + END DO + END DO + END IF +* ===================================================== +* End test SGELS +* ===================================================== +* ===================================================== +* Begin test SGELST +* ===================================================== + IF( IRANK.EQ.1 ) THEN * * Generate a matrix of scaling type ISCALE * CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 65 INB = 1, NNB - MB = NBVAL( INB ) - CALL XLAENV( 1, MB ) - DO 62 IMB = 1, NNB - NB = NBVAL( IMB ) - CALL XLAENV( 2, NB ) -* - DO 60 ITRAN = 1, 2 +* +* Loop for testing different block sizes. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 1, NB ) +* +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -563,31 +587,38 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL SLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, B, LDB ) END IF - SRNAMT = 'SGETSLS ' - CALL SGETSLS( TRANS, M, N, NRHS, A, - $ LDA, B, LDB, WORK, LWORK, INFO ) + SRNAMT = 'SGELST' + CALL SGELST( TRANS, M, N, NRHS, A, LDA, B, + $ LDB, WORK, LWORK, INFO ) IF( INFO.NE.0 ) - $ CALL ALAERH( PATH, 'SGETSLS ', INFO, 0, + $ CALL ALAERH( PATH, 'SGELST', INFO, 0, $ TRANS, M, N, NRHS, -1, NB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 3: Check correctness of results +* for SGELST, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL SLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL SQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, WORK, - $ RESULT( 15 ) ) + $ RESULT( 3 ) ) +* +* Test 4: Check correctness of results +* for SGELST. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * -* Solving LS system +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) * - RESULT( 16 ) = SQRT17( TRANS, 1, M, N, + RESULT( 4 ) = SQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, $ LWORK ) @@ -595,7 +626,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * Solving overdetermined system * - RESULT( 16 ) = SQRT14( TRANS, M, N, + RESULT( 4 ) = SQRT14( TRANS, M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) END IF @@ -603,21 +634,151 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 50 K = 15, 16 + DO K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) - WRITE( NOUT, FMT = 9997 )TRANS, M, - $ N, NRHS, MB, NB, ITYPE, K, + WRITE( NOUT, FMT = 9999 ) TRANS, M, + $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 50 CONTINUE + END DO NRUN = NRUN + 2 - 60 CONTINUE - 62 CONTINUE - 65 CONTINUE + END DO + END DO END IF +* ===================================================== +* End test SGELST +* ===================================================== +* ===================================================== +* Begin test SGETSLS +* ===================================================== + IF( IRANK.EQ.1 ) THEN +* +* Generate a matrix of scaling type ISCALE +* + CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA, + $ ISEED ) +* +* Loop for testing different block sizes MB. +* + DO IMB = 1, NNB + MB = NBVAL( IMB ) + CALL XLAENV( 1, MB ) +* +* Loop for testing different block sizes NB. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 2, NB ) +* +* Loop for testing non-transposed +* and transposed. +* + DO ITRAN = 1, 2 + IF( ITRAN.EQ.1 ) THEN + TRANS = 'N' + NROWS = M + NCOLS = N + ELSE + TRANS = 'T' + NROWS = N + NCOLS = M + END IF + LDWORK = MAX( 1, NCOLS ) +* +* Set up a consistent rhs +* + IF( NCOLS.GT.0 ) THEN + CALL SLARNV( 2, ISEED, NCOLS*NRHS, + $ WORK ) + CALL SSCAL( NCOLS*NRHS, + $ ONE / REAL( NCOLS ), + $ WORK, 1 ) + END IF + CALL SGEMM( TRANS, 'No transpose', + $ NROWS, NRHS, NCOLS, ONE, + $ COPYA, LDA, WORK, LDWORK, + $ ZERO, B, LDB ) + CALL SLACPY( 'Full', NROWS, NRHS, + $ B, LDB, COPYB, LDB ) +* +* Solve LS or overdetermined system +* + IF( M.GT.0 .AND. N.GT.0 ) THEN + CALL SLACPY( 'Full', M, N, + $ COPYA, LDA, A, LDA ) + CALL SLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, B, LDB ) + END IF + SRNAMT = 'SGETSLS' + CALL SGETSLS( TRANS, M, N, NRHS, + $ A, LDA, B, LDB, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) + $ CALL ALAERH( PATH, 'SGETSLS', INFO, + $ 0, TRANS, M, N, NRHS, + $ -1, NB, ITYPE, NFAIL, + $ NERRS, NOUT ) +* +* Test 5: Check correctness of results +* for SGETSLS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) +* + IF( NROWS.GT.0 .AND. NRHS.GT.0 ) + $ CALL SLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, C, LDB ) + CALL SQRT16( TRANS, M, N, NRHS, + $ COPYA, LDA, B, LDB, + $ C, LDB, WORK, + $ RESULT( 5 ) ) +* +* Test 6: Check correctness of results +* for SGETSLS. +* + IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. + $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN +* +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) +* + RESULT( 6 ) = SQRT17( TRANS, 1, M, + $ N, NRHS, COPYA, LDA, + $ B, LDB, COPYB, LDB, + $ C, WORK, LWORK ) + ELSE +* +* Solving overdetermined system +* + RESULT( 6 ) = SQRT14( TRANS, M, N, + $ NRHS, COPYA, LDA, + $ B, LDB, WORK, LWORK ) + END IF +* +* Print information about the tests that +* did not pass the threshold. +* + DO K = 5, 6 + IF( RESULT( K ).GE.THRESH ) THEN + IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) + $ CALL ALAHD( NOUT, PATH ) + WRITE( NOUT, FMT = 9997 ) TRANS, + $ M, N, NRHS, MB, NB, ITYPE, + $ K, RESULT( K ) + NFAIL = NFAIL + 1 + END IF + END DO + NRUN = NRUN + 2 + END DO + END DO + END DO + END IF +* ===================================================== +* End test SGETSLS +* ===================================================== * * Generate a matrix of scaling type ISCALE and rank * type IRANK. @@ -662,37 +823,37 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 3: Compute relative error in svd +* Test 7: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * - RESULT( 3 ) = SQRT12( CRANK, CRANK, A, LDA, + RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA, $ COPYS, WORK, LWORK ) * -* Test 4: Compute error in solution +* Test 8: Compute error in solution * workspace: M*NRHS + M * CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL SQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 4 ) ) + $ WORK( M*NRHS+1 ), RESULT( 8 ) ) * -* Test 5: Check norm of r'*A +* Test 9: Check norm of r'*A * workspace: NRHS*(M+N) * - RESULT( 5 ) = ZERO + RESULT( 9 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 5 ) = SQRT17( 'No transpose', 1, M, + $ RESULT( 9 ) = SQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 6: Check if x is in the rowspace of A +* Test 10: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * - RESULT( 6 ) = ZERO + RESULT( 10 ) = ZERO * IF( N.GT.CRANK ) - $ RESULT( 6 ) = SQRT14( 'No transpose', M, N, + $ RESULT( 10 ) = SQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -716,38 +877,38 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * workspace used: 3*min(m,n) + * max(2*min(m,n),nrhs,max(m,n)) * -* Test 7: Compute relative error in svd +* Test 11: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 7 ) = SASUM( MNMIN, S, 1 ) / + RESULT( 11 ) = SASUM( MNMIN, S, 1 ) / $ SASUM( MNMIN, COPYS, 1 ) / $ ( EPS*REAL( MNMIN ) ) ELSE - RESULT( 7 ) = ZERO + RESULT( 11 ) = ZERO END IF * -* Test 8: Compute error in solution +* Test 12: Compute error in solution * CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL SQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 8 ) ) + $ WORK( M*NRHS+1 ), RESULT( 12 ) ) * -* Test 9: Check norm of r'*A +* Test 13: Check norm of r'*A * - RESULT( 9 ) = ZERO + RESULT( 13 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 9 ) = SQRT17( 'No transpose', 1, M, + $ RESULT( 13 ) = SQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 10: Check if x is in the rowspace of A +* Test 14: Check if x is in the rowspace of A * - RESULT( 10 ) = ZERO + RESULT( 14 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 10 ) = SQRT14( 'No transpose', M, N, + $ RESULT( 14 ) = SQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -776,45 +937,45 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 11: Compute relative error in svd +* Test 15: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 11 ) = SASUM( MNMIN, S, 1 ) / + RESULT( 15 ) = SASUM( MNMIN, S, 1 ) / $ SASUM( MNMIN, COPYS, 1 ) / $ ( EPS*REAL( MNMIN ) ) ELSE - RESULT( 11 ) = ZERO + RESULT( 15 ) = ZERO END IF * -* Test 12: Compute error in solution +* Test 16: Compute error in solution * CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL SQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, - $ WORK( M*NRHS+1 ), RESULT( 12 ) ) + $ WORK( M*NRHS+1 ), RESULT( 16 ) ) * -* Test 13: Check norm of r'*A +* Test 17: Check norm of r'*A * - RESULT( 13 ) = ZERO + RESULT( 17 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 13 ) = SQRT17( 'No transpose', 1, M, + $ RESULT( 17 ) = SQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 14: Check if x is in the rowspace of A +* Test 18: Check if x is in the rowspace of A * - RESULT( 14 ) = ZERO + RESULT( 18 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 14 ) = SQRT14( 'No transpose', M, N, + $ RESULT( 18 ) = SQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Print information about the tests that did not * pass the threshold. * - DO 90 K = 3, 14 + DO 90 K = 7, 18 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) diff --git a/TESTING/LIN/serrls.f b/TESTING/LIN/serrls.f index e6ee4360f9..6c4820066a 100644 --- a/TESTING/LIN/serrls.f +++ b/TESTING/LIN/serrls.f @@ -22,7 +22,7 @@ *> \verbatim *> *> SERRLS tests the error exits for the REAL least squares -*> driver routines (SGELS, SGELSS, SGELSY, SGELSD). +*> driver routines (SGELS, SGELST, SGETSLS, SGELSS, SGELSY, SGELSD). *> \endverbatim * * Arguments: @@ -83,7 +83,8 @@ SUBROUTINE SERRLS( PATH, NUNIT ) EXTERNAL LSAMEN * .. * .. External Subroutines .. - EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELSY + EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELST, + $ SGELSY, SGETSLS * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -130,10 +131,66 @@ SUBROUTINE SERRLS( PATH, NUNIT ) INFOT = 8 CALL SGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL SGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK ) * +* SGELST +* + SRNAMT = 'SGELST' + INFOT = 1 + CALL SGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL SGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL SGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL SGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL SGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL SGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL SGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) + INFOT = 10 + CALL SGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK ) +* +* SGETSLS +* + SRNAMT = 'SGETSLS' + INFOT = 1 + CALL SGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL SGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL SGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL SGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL SGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL SGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL SGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK ) +* * SGELSS * SRNAMT = 'SGELSS' diff --git a/TESTING/LIN/zdrvls.f b/TESTING/LIN/zdrvls.f index 2eab979054..b21345d302 100644 --- a/TESTING/LIN/zdrvls.f +++ b/TESTING/LIN/zdrvls.f @@ -31,8 +31,8 @@ *> *> \verbatim *> -*> ZDRVLS tests the least squares driver routines ZGELS, ZGETSLS, ZGELSS, ZGELSY -*> and ZGELSD. +*> ZDRVLS tests the least squares driver routines ZGELS, ZGELST, +*> ZGETSLS, ZGELSS, ZGELSY and ZGELSD. *> \endverbatim * * Arguments: @@ -211,7 +211,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * .. Parameters .. INTEGER NTESTS - PARAMETER ( NTESTS = 16 ) + PARAMETER ( NTESTS = 18 ) INTEGER SMLSIZ PARAMETER ( SMLSIZ = 25 ) DOUBLE PRECISION ONE, ZERO @@ -228,8 +228,8 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, $ NFAIL, NRHS, NROWS, NRUN, RANK, MB, $ MMAX, NMAX, NSMAX, LIWORK, LRWORK, - $ LWORK_ZGELS, LWORK_ZGETSLS, LWORK_ZGELSS, - $ LWORK_ZGELSY, LWORK_ZGELSD, + $ LWORK_ZGELS, LWORK_ZGELST, LWORK_ZGETSLS, + $ LWORK_ZGELSS, LWORK_ZGELSY, LWORK_ZGELSD, $ LRWORK_ZGELSY, LRWORK_ZGELSS, LRWORK_ZGELSD DOUBLE PRECISION EPS, NORMA, NORMB, RCOND * .. @@ -248,10 +248,10 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17 * .. * .. External Subroutines .. - EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV, - $ ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS, - $ ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15, - $ ZQRT16, ZGETSLS + EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, ZERRLS, ZGELS, + $ ZGELSD, ZGELSS, ZGELST, ZGELSY, ZGEMM, + $ ZGETSLS, ZLACPY, ZLARNV, ZQRT13, ZQRT15, + $ ZQRT16, ZDSCAL, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, INT, SQRT @@ -334,7 +334,8 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, LIWORK = 1 * * Iterate through all test cases and compute necessary workspace -* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines. +* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD +* routines. * DO IM = 1, NM M = MVAL( IM ) @@ -361,6 +362,10 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL ZGELS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) LWORK_ZGELS = INT ( WQ( 1 ) ) +* Compute workspace needed for ZGELST + CALL ZGELST( TRANS, M, N, NRHS, A, LDA, + $ B, LDB, WQ, -1, INFO ) + LWORK_ZGELST = INT ( WQ ( 1 ) ) * Compute workspace needed for ZGETSLS CALL ZGETSLS( TRANS, M, N, NRHS, A, LDA, $ B, LDB, WQ, -1, INFO ) @@ -390,9 +395,9 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, LRWORK = MAX( LRWORK, LRWORK_ZGELSY, $ LRWORK_ZGELSS, LRWORK_ZGELSD ) * Compute LWORK workspace needed for all functions - LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGETSLS, - $ LWORK_ZGELSY, LWORK_ZGELSS, - $ LWORK_ZGELSD ) + LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGELST, + $ LWORK_ZGETSLS, LWORK_ZGELSY, + $ LWORK_ZGELSS, LWORK_ZGELSD ) END IF ENDDO ENDDO @@ -425,21 +430,26 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, ITYPE = ( IRANK-1 )*3 + ISCALE IF( .NOT.DOTYPE( ITYPE ) ) $ GO TO 100 -* +* ===================================================== +* Begin test ZGELS +* ===================================================== IF( IRANK.EQ.1 ) THEN * -* Test ZGELS -* * Generate a matrix of scaling type ISCALE * CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 40 INB = 1, NNB +* +* Loop for testing different block sizes. +* + DO INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) CALL XLAENV( 3, NXVAL( INB ) ) * - DO 30 ITRAN = 1, 2 +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -484,15 +494,20 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 1: Check correctness of results +* for ZGELS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL ZLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL ZQRT16( TRANS, M, N, NRHS, COPYA, $ LDA, B, LDB, C, LDB, RWORK, $ RESULT( 1 ) ) +* +* Test 2: Check correctness of results +* for ZGELS. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN @@ -515,7 +530,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 20 K = 1, 2 + DO K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) @@ -524,26 +539,34 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 20 CONTINUE + END DO NRUN = NRUN + 2 - 30 CONTINUE - 40 CONTINUE -* -* -* Test ZGETSLS + END DO + END DO + END IF +* ===================================================== +* End test ZGELS +* ===================================================== +* ===================================================== +* Begin test ZGELST +* ===================================================== + IF( IRANK.EQ.1 ) THEN * * Generate a matrix of scaling type ISCALE * CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA, $ ISEED ) - DO 65 INB = 1, NNB - MB = NBVAL( INB ) - CALL XLAENV( 1, MB ) - DO 62 IMB = 1, NNB - NB = NBVAL( IMB ) - CALL XLAENV( 2, NB ) * - DO 60 ITRAN = 1, 2 +* Loop for testing different block sizes. +* + DO INB = 1, NNB + NB = NBVAL( INB ) + CALL XLAENV( 1, NB ) + CALL XLAENV( 3, NXVAL( INB ) ) +* +* Loop for testing non-transposed and transposed. +* + DO ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN TRANS = 'N' NROWS = M @@ -560,9 +583,9 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, IF( NCOLS.GT.0 ) THEN CALL ZLARNV( 2, ISEED, NCOLS*NRHS, $ WORK ) - CALL ZSCAL( NCOLS*NRHS, - $ CONE / DBLE( NCOLS ), WORK, - $ 1 ) + CALL ZDSCAL( NCOLS*NRHS, + $ ONE / DBLE( NCOLS ), WORK, + $ 1 ) END IF CALL ZGEMM( TRANS, 'No transpose', NROWS, $ NRHS, NCOLS, CONE, COPYA, LDA, @@ -578,31 +601,37 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, CALL ZLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, B, LDB ) END IF - SRNAMT = 'ZGETSLS ' - CALL ZGETSLS( TRANS, M, N, NRHS, A, - $ LDA, B, LDB, WORK, LWORK, INFO ) + SRNAMT = 'ZGELST' + CALL ZGELST( TRANS, M, N, NRHS, A, LDA, B, + $ LDB, WORK, LWORK, INFO ) +* IF( INFO.NE.0 ) - $ CALL ALAERH( PATH, 'ZGETSLS ', INFO, 0, + $ CALL ALAERH( PATH, 'ZGELST', INFO, 0, $ TRANS, M, N, NRHS, -1, NB, $ ITYPE, NFAIL, NERRS, $ NOUT ) * -* Check correctness of results +* Test 3: Check correctness of results +* for ZGELST, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) * - LDWORK = MAX( 1, NROWS ) IF( NROWS.GT.0 .AND. NRHS.GT.0 ) $ CALL ZLACPY( 'Full', NROWS, NRHS, $ COPYB, LDB, C, LDB ) CALL ZQRT16( TRANS, M, N, NRHS, COPYA, - $ LDA, B, LDB, C, LDB, WORK2, - $ RESULT( 15 ) ) + $ LDA, B, LDB, C, LDB, RWORK, + $ RESULT( 3 ) ) +* +* Test 4: Check correctness of results +* for ZGELST. * IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN * * Solving LS system * - RESULT( 16 ) = ZQRT17( TRANS, 1, M, N, + RESULT( 4 ) = ZQRT17( TRANS, 1, M, N, $ NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, $ LWORK ) @@ -610,7 +639,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * Solving overdetermined system * - RESULT( 16 ) = ZQRT14( TRANS, M, N, + RESULT( 4 ) = ZQRT14( TRANS, M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) END IF @@ -618,21 +647,151 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * Print information about the tests that * did not pass the threshold. * - DO 50 K = 15, 16 + DO K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) - WRITE( NOUT, FMT = 9997 )TRANS, M, - $ N, NRHS, MB, NB, ITYPE, K, + WRITE( NOUT, FMT = 9999 )TRANS, M, + $ N, NRHS, NB, ITYPE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF - 50 CONTINUE + END DO NRUN = NRUN + 2 - 60 CONTINUE - 62 CONTINUE - 65 CONTINUE + END DO + END DO + END IF +* ===================================================== +* End test ZGELST +* ===================================================== +* ===================================================== +* Begin test ZGELSTSLS +* ===================================================== + IF( IRANK.EQ.1 ) THEN +* +* Generate a matrix of scaling type ISCALE +* + CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA, + $ ISEED ) +* +* Loop for testing different block sizes MB. +* + DO INB = 1, NNB + MB = NBVAL( INB ) + CALL XLAENV( 1, MB ) +* +* Loop for testing different block sizes NB. +* + DO IMB = 1, NNB + NB = NBVAL( IMB ) + CALL XLAENV( 2, NB ) +* +* Loop for testing non-transposed +* and transposed. +* + DO ITRAN = 1, 2 + IF( ITRAN.EQ.1 ) THEN + TRANS = 'N' + NROWS = M + NCOLS = N + ELSE + TRANS = 'C' + NROWS = N + NCOLS = M + END IF + LDWORK = MAX( 1, NCOLS ) +* +* Set up a consistent rhs +* + IF( NCOLS.GT.0 ) THEN + CALL ZLARNV( 2, ISEED, NCOLS*NRHS, + $ WORK ) + CALL ZSCAL( NCOLS*NRHS, + $ CONE / DBLE( NCOLS ), + $ WORK, 1 ) + END IF + CALL ZGEMM( TRANS, 'No transpose', + $ NROWS, NRHS, NCOLS, CONE, + $ COPYA, LDA, WORK, LDWORK, + $ CZERO, B, LDB ) + CALL ZLACPY( 'Full', NROWS, NRHS, + $ B, LDB, COPYB, LDB ) +* +* Solve LS or overdetermined system +* + IF( M.GT.0 .AND. N.GT.0 ) THEN + CALL ZLACPY( 'Full', M, N, + $ COPYA, LDA, A, LDA ) + CALL ZLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, B, LDB ) + END IF + SRNAMT = 'ZGETSLS ' + CALL ZGETSLS( TRANS, M, N, NRHS, A, + $ LDA, B, LDB, WORK, LWORK, + $ INFO ) + IF( INFO.NE.0 ) + $ CALL ALAERH( PATH, 'ZGETSLS ', INFO, + $ 0, TRANS, M, N, NRHS, + $ -1, NB, ITYPE, NFAIL, + $ NERRS, NOUT ) +* +* Test 5: Check correctness of results +* for ZGETSLS, compute the residual: +* RESID = norm(B - A*X) / +* / ( max(m,n) * norm(A) * norm(X) * EPS ) +* + IF( NROWS.GT.0 .AND. NRHS.GT.0 ) + $ CALL ZLACPY( 'Full', NROWS, NRHS, + $ COPYB, LDB, C, LDB ) + CALL ZQRT16( TRANS, M, N, NRHS, + $ COPYA, LDA, B, LDB, + $ C, LDB, WORK2, + $ RESULT( 5 ) ) +* +* Test 6: Check correctness of results +* for ZGETSLS. +* + IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR. + $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN +* +* Solving LS system, compute: +* r = norm((B- A*X)**T * A) / +* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS) +* + RESULT( 6 ) = ZQRT17( TRANS, 1, M, + $ N, NRHS, COPYA, LDA, + $ B, LDB, COPYB, LDB, + $ C, WORK, LWORK ) + ELSE +* +* Solving overdetermined system +* + RESULT( 6 ) = ZQRT14( TRANS, M, N, + $ NRHS, COPYA, LDA, B, + $ LDB, WORK, LWORK ) + END IF +* +* Print information about the tests that +* did not pass the threshold. +* + DO K = 5, 6 + IF( RESULT( K ).GE.THRESH ) THEN + IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) + $ CALL ALAHD( NOUT, PATH ) + WRITE( NOUT, FMT = 9997 )TRANS, + $ M, N, NRHS, MB, NB, ITYPE, K, + $ RESULT( K ) + NFAIL = NFAIL + 1 + END IF + END DO + NRUN = NRUN + 2 + END DO + END DO + END DO END IF +* ===================================================== +* End test ZGELSTSLS +* ===================================================== * * Generate a matrix of scaling type ISCALE and rank * type IRANK. @@ -680,37 +839,37 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * * workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS) * -* Test 3: Compute relative error in svd +* Test 7: Compute relative error in svd * workspace: M*N + 4*MIN(M,N) + MAX(M,N) * - RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA, + RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA, $ COPYS, WORK, LWORK, RWORK ) * -* Test 4: Compute error in solution +* Test 8: Compute error in solution * workspace: M*NRHS + M * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 4 ) ) + $ RESULT( 8 ) ) * -* Test 5: Check norm of r'*A +* Test 9: Check norm of r'*A * workspace: NRHS*(M+N) * - RESULT( 5 ) = ZERO + RESULT( 9 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 5 ) = ZQRT17( 'No transpose', 1, M, + $ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 6: Check if x is in the rowspace of A +* Test 10: Check if x is in the rowspace of A * workspace: (M+NRHS)*(N+2) * - RESULT( 6 ) = ZERO + RESULT( 10 ) = ZERO * IF( N.GT.CRANK ) - $ RESULT( 6 ) = ZQRT14( 'No transpose', M, N, + $ RESULT( 10 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -736,38 +895,38 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, * workspace used: 3*min(m,n) + * max(2*min(m,n),nrhs,max(m,n)) * -* Test 7: Compute relative error in svd +* Test 11: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 7 ) = DASUM( MNMIN, S, 1 ) / + RESULT( 11 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE - RESULT( 7 ) = ZERO + RESULT( 11 ) = ZERO END IF * -* Test 8: Compute error in solution +* Test 12: Compute error in solution * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 8 ) ) + $ RESULT( 12 ) ) * -* Test 9: Check norm of r'*A +* Test 13: Check norm of r'*A * - RESULT( 9 ) = ZERO + RESULT( 13 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M, + $ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 10: Check if x is in the rowspace of A +* Test 14: Check if x is in the rowspace of A * - RESULT( 10 ) = ZERO + RESULT( 14 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 10 ) = ZQRT14( 'No transpose', M, N, + $ RESULT( 14 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * @@ -792,45 +951,45 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, $ N, NRHS, -1, NB, ITYPE, NFAIL, $ NERRS, NOUT ) * -* Test 11: Compute relative error in svd +* Test 15: Compute relative error in svd * IF( RANK.GT.0 ) THEN CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 ) - RESULT( 11 ) = DASUM( MNMIN, S, 1 ) / + RESULT( 15 ) = DASUM( MNMIN, S, 1 ) / $ DASUM( MNMIN, COPYS, 1 ) / $ ( EPS*DBLE( MNMIN ) ) ELSE - RESULT( 11 ) = ZERO + RESULT( 15 ) = ZERO END IF * -* Test 12: Compute error in solution +* Test 16: Compute error in solution * CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK, $ LDWORK ) CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA, $ LDA, B, LDB, WORK, LDWORK, RWORK, - $ RESULT( 12 ) ) + $ RESULT( 16 ) ) * -* Test 13: Check norm of r'*A +* Test 17: Check norm of r'*A * - RESULT( 13 ) = ZERO + RESULT( 17 ) = ZERO IF( M.GT.CRANK ) - $ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M, + $ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M, $ N, NRHS, COPYA, LDA, B, LDB, $ COPYB, LDB, C, WORK, LWORK ) * -* Test 14: Check if x is in the rowspace of A +* Test 18: Check if x is in the rowspace of A * - RESULT( 14 ) = ZERO + RESULT( 18 ) = ZERO IF( N.GT.CRANK ) - $ RESULT( 14 ) = ZQRT14( 'No transpose', M, N, + $ RESULT( 18 ) = ZQRT14( 'No transpose', M, N, $ NRHS, COPYA, LDA, B, LDB, $ WORK, LWORK ) * * Print information about the tests that did not * pass the threshold. * - DO 80 K = 3, 14 + DO 80 K = 7, 18 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) From d5203e94d5ea36b0fcce4f70bcc4a0be3b1fa325 Mon Sep 17 00:00:00 2001 From: scr2016 Date: Thu, 10 Nov 2022 07:00:47 -0800 Subject: [PATCH 2/2] added missing testing for error exits for ZGELST routine, i.e. modified TESTING/LIN/zerrls.f accordingly. Also fixed comments typo in [S,D,C,Z]GELST. modified: SRC/cgelst.f modified: SRC/dgelst.f modified: SRC/sgelst.f modified: SRC/zgelst.f modified: TESTING/LIN/zerrls.f --- SRC/cgelst.f | 2 +- SRC/dgelst.f | 2 +- SRC/sgelst.f | 2 +- SRC/zgelst.f | 2 +- TESTING/LIN/zerrls.f | 61 ++++++++++++++++++++++++++++++++++++++++++-- 5 files changed, 63 insertions(+), 6 deletions(-) diff --git a/SRC/cgelst.f b/SRC/cgelst.f index 26dda1c0ca..7d8e44ddf2 100644 --- a/SRC/cgelst.f +++ b/SRC/cgelst.f @@ -1,4 +1,4 @@ -*> \brief CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +*> \brief CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q. * * =========== DOCUMENTATION =========== * diff --git a/SRC/dgelst.f b/SRC/dgelst.f index 80957d5113..ca0e04a9b8 100644 --- a/SRC/dgelst.f +++ b/SRC/dgelst.f @@ -1,4 +1,4 @@ -*> \brief DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +*> \brief DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q. * * =========== DOCUMENTATION =========== * diff --git a/SRC/sgelst.f b/SRC/sgelst.f index 5e27e37e38..5377bc720a 100644 --- a/SRC/sgelst.f +++ b/SRC/sgelst.f @@ -1,4 +1,4 @@ -*> \brief SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +*> \brief SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q. * * =========== DOCUMENTATION =========== * diff --git a/SRC/zgelst.f b/SRC/zgelst.f index 35b73dc454..4dabdc91e6 100644 --- a/SRC/zgelst.f +++ b/SRC/zgelst.f @@ -1,4 +1,4 @@ -*> \brief ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q. +*> \brief ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q. * * =========== DOCUMENTATION =========== * diff --git a/TESTING/LIN/zerrls.f b/TESTING/LIN/zerrls.f index 66e56c8c6b..22f049ee06 100644 --- a/TESTING/LIN/zerrls.f +++ b/TESTING/LIN/zerrls.f @@ -22,7 +22,7 @@ *> \verbatim *> *> ZERRLS tests the error exits for the COMPLEX*16 least squares -*> driver routines (ZGELS, CGELSS, CGELSY, CGELSD). +*> driver routines (ZGELS, ZGELST, ZGETSLS, CGELSS, CGELSY, CGELSD). *> \endverbatim * * Arguments: @@ -83,7 +83,8 @@ SUBROUTINE ZERRLS( PATH, NUNIT ) EXTERNAL LSAMEN * .. * .. External Subroutines .. - EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELSY + EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELST, + $ ZGELSY, ZGETSLS * .. * .. Scalars in Common .. LOGICAL LERR, OK @@ -130,10 +131,66 @@ SUBROUTINE ZERRLS( PATH, NUNIT ) INFOT = 8 CALL ZGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL ZGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'ZGELS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK ) * +* ZGELST +* + SRNAMT = 'ZGELST' + INFOT = 1 + CALL ZGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL ZGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL ZGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL ZGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL ZGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL ZGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL ZGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) + INFOT = 10 + CALL ZGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK ) +* +* ZGETSLS +* + SRNAMT = 'ZGETSLS' + INFOT = 1 + CALL ZGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 2 + CALL ZGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 3 + CALL ZGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 4 + CALL ZGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 6 + CALL ZGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL ZGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) + INFOT = 8 + CALL ZGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO ) + CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK ) +* * ZGELSS * SRNAMT = 'ZGELSS'