diff --git a/SRC/CMakeLists.txt b/SRC/CMakeLists.txt
index d324d94116..5d2e072584 100644
--- a/SRC/CMakeLists.txt
+++ b/SRC/CMakeLists.txt
@@ -86,7 +86,7 @@ set(SLASRC
sgbsvx.f sgbtf2.f sgbtrf.f sgbtrs.f sgebak.f sgebal.f sgebd2.f
sgebrd.f sgecon.f sgeequ.f sgees.f sgeesx.f sgeev.f sgeevx.f
sgehd2.f sgehrd.f sgelq2.f sgelqf.f
- sgels.f sgelsd.f sgelss.f sgelsy.f sgeql2.f sgeqlf.f
+ sgels.f sgelst.f sgelsd.f sgelss.f sgelsy.f sgeql2.f sgeqlf.f
sgeqp3.f sgeqr2.f sgeqr2p.f sgeqrf.f sgeqrfp.f sgerfs.f sgerq2.f sgerqf.f
sgesc2.f sgesdd.f sgesv.f sgesvd.f sgesvdx.f sgesvx.f sgetc2.f sgetf2.f
sgetri.f
@@ -177,7 +177,7 @@ set(CLASRC
cgbtf2.f cgbtrf.f cgbtrs.f cgebak.f cgebal.f cgebd2.f cgebrd.f
cgecon.f cgeequ.f cgees.f cgeesx.f cgeev.f cgeevx.f
cgehd2.f cgehrd.f cgelq2.f cgelqf.f
- cgels.f cgelsd.f cgelss.f cgelsy.f cgeql2.f cgeqlf.f cgeqp3.f
+ cgels.f cgelst.f cgelsd.f cgelss.f cgelsy.f cgeql2.f cgeqlf.f cgeqp3.f
cgeqr2.f cgeqr2p.f cgeqrf.f cgeqrfp.f cgerfs.f cgerq2.f cgerqf.f
cgesc2.f cgesdd.f cgesv.f cgesvd.f cgesvdx.f
cgesvj.f cgejsv.f cgsvj0.f cgsvj1.f
@@ -286,7 +286,7 @@ set(DLASRC
dgbsvx.f dgbtf2.f dgbtrf.f dgbtrs.f dgebak.f dgebal.f dgebd2.f
dgebrd.f dgecon.f dgeequ.f dgees.f dgeesx.f dgeev.f dgeevx.f
dgehd2.f dgehrd.f dgelq2.f dgelqf.f
- dgels.f dgelsd.f dgelss.f dgelsy.f dgeql2.f dgeqlf.f
+ dgels.f dgelst.f dgelsd.f dgelss.f dgelsy.f dgeql2.f dgeqlf.f
dgeqp3.f dgeqr2.f dgeqr2p.f dgeqrf.f dgeqrfp.f dgerfs.f dgerq2.f dgerqf.f
dgesc2.f dgesdd.f dgesv.f dgesvd.f dgesvdx.f dgesvx.f dgetc2.f dgetf2.f
dgetrf.f dgetrf2.f dgetri.f
@@ -375,7 +375,7 @@ set(ZLASRC
zgbtf2.f zgbtrf.f zgbtrs.f zgebak.f zgebal.f zgebd2.f zgebrd.f
zgecon.f zgeequ.f zgees.f zgeesx.f zgeev.f zgeevx.f
zgehd2.f zgehrd.f zgelq2.f zgelqf.f
- zgels.f zgelsd.f zgelss.f zgelsy.f zgeql2.f zgeqlf.f zgeqp3.f
+ zgels.f zgelst.f zgelsd.f zgelss.f zgelsy.f zgeql2.f zgeqlf.f zgeqp3.f
zgeqr2.f zgeqr2p.f zgeqrf.f zgeqrfp.f zgerfs.f zgerq2.f zgerqf.f
zgesc2.f zgesdd.f zgesv.f zgesvd.f zgesvdx.f zgesvx.f
zgesvj.f zgejsv.f zgsvj0.f zgsvj1.f
diff --git a/SRC/Makefile b/SRC/Makefile
index 765abf42ac..35b8c64aea 100644
--- a/SRC/Makefile
+++ b/SRC/Makefile
@@ -118,7 +118,7 @@ SLASRC = \
sgbsvx.o sgbtf2.o sgbtrf.o sgbtrs.o sgebak.o sgebal.o sgebd2.o \
sgebrd.o sgecon.o sgeequ.o sgees.o sgeesx.o sgeev.o sgeevx.o \
sgehd2.o sgehrd.o sgelq2.o sgelqf.o \
- sgels.o sgelsd.o sgelss.o sgelsy.o sgeql2.o sgeqlf.o \
+ sgels.o sgelst.o sgelsd.o sgelss.o sgelsy.o sgeql2.o sgeqlf.o \
sgeqp3.o sgeqr2.o sgeqr2p.o sgeqrf.o sgeqrfp.o sgerfs.o \
sgerq2.o sgerqf.o sgesc2.o sgesdd.o sgesv.o sgesvd.o sgesvdx.o sgesvx.o \
sgetc2.o sgetf2.o sgetri.o \
@@ -211,7 +211,7 @@ CLASRC = \
cgbtf2.o cgbtrf.o cgbtrs.o cgebak.o cgebal.o cgebd2.o cgebrd.o \
cgecon.o cgeequ.o cgees.o cgeesx.o cgeev.o cgeevx.o \
cgehd2.o cgehrd.o cgelq2.o cgelqf.o \
- cgels.o cgelsd.o cgelss.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \
+ cgels.o cgelst.o cgelsd.o cgelss.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \
cgeqr2.o cgeqr2p.o cgeqrf.o cgeqrfp.o cgerfs.o \
cgerq2.o cgerqf.o cgesc2.o cgesdd.o cgesv.o cgesvd.o cgesvdx.o \
cgesvj.o cgejsv.o cgsvj0.o cgsvj1.o \
@@ -320,7 +320,7 @@ DLASRC = \
dgbsvx.o dgbtf2.o dgbtrf.o dgbtrs.o dgebak.o dgebal.o dgebd2.o \
dgebrd.o dgecon.o dgeequ.o dgees.o dgeesx.o dgeev.o dgeevx.o \
dgehd2.o dgehrd.o dgelq2.o dgelqf.o \
- dgels.o dgelsd.o dgelss.o dgelsy.o dgeql2.o dgeqlf.o \
+ dgels.o dgelst.o dgelsd.o dgelss.o dgelsy.o dgeql2.o dgeqlf.o \
dgeqp3.o dgeqr2.o dgeqr2p.o dgeqrf.o dgeqrfp.o dgerfs.o \
dgerq2.o dgerqf.o dgesc2.o dgesdd.o dgesv.o dgesvd.o dgesvdx.o dgesvx.o \
dgetc2.o dgetf2.o dgetrf.o dgetri.o \
@@ -412,7 +412,7 @@ ZLASRC = \
zgbtf2.o zgbtrf.o zgbtrs.o zgebak.o zgebal.o zgebd2.o zgebrd.o \
zgecon.o zgeequ.o zgees.o zgeesx.o zgeev.o zgeevx.o \
zgehd2.o zgehrd.o zgelq2.o zgelqf.o \
- zgels.o zgelsd.o zgelss.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \
+ zgels.o zgelst.o zgelsd.o zgelss.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \
zgeqr2.o zgeqr2p.o zgeqrf.o zgeqrfp.o zgerfs.o zgerq2.o zgerqf.o \
zgesc2.o zgesdd.o zgesv.o zgesvd.o zgesvdx.o \
zgesvj.o zgejsv.o zgsvj0.o zgsvj1.o \
diff --git a/SRC/cgelst.f b/SRC/cgelst.f
new file mode 100644
index 0000000000..7d8e44ddf2
--- /dev/null
+++ b/SRC/cgelst.f
@@ -0,0 +1,533 @@
+*> \brief CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
+*> or LQ factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'C' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'C': the linear system involves A**H.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by CGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by CGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'C'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> modulus of elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of the modulus of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ COMPLEX CZERO
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ REAL ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ REAL RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, CLANGE
+ EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL CGELQT, CGEQRT, CGEMLQT, CGEMQRT, SLABAD,
+ $ CLASCL, CLASET, CTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'CGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = REAL( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'CGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL SLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = CLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL CGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL CTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
+ $ N, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL CGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL CTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL CTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
+ $ M, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = REAL( LWOPT )
+*
+ RETURN
+*
+* End of CGELST
+*
+ END
diff --git a/SRC/dgelst.f b/SRC/dgelst.f
new file mode 100644
index 0000000000..ca0e04a9b8
--- /dev/null
+++ b/SRC/dgelst.f
@@ -0,0 +1,531 @@
+*> \brief DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
+*> factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'T' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'T': the linear system involves A**T.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by DGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by DGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'T'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
+ $ DLASCL, DLASET, DTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
+ $ INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ RETURN
+*
+* End of DGELST
+*
+ END
diff --git a/SRC/sgelst.f b/SRC/sgelst.f
new file mode 100644
index 0000000000..5377bc720a
--- /dev/null
+++ b/SRC/sgelst.f
@@ -0,0 +1,531 @@
+*> \brief SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
+*> factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'T' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'T': the linear system involves A**T.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by SGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by SGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'T'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup realGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ REAL ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ REAL RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, SLANGE
+ EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGELQT, SGEQRT, SGEMLQT, SGEMQRT, SLABAD,
+ $ SLASCL, SLASET, STRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'SGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = REAL( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'SGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL SLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = SLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL SGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
+ $ INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL STRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL SGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL STRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = REAL( LWOPT )
+*
+ RETURN
+*
+* End of SGELST
+*
+ END
diff --git a/SRC/zgelst.f b/SRC/zgelst.f
new file mode 100644
index 0000000000..4dabdc91e6
--- /dev/null
+++ b/SRC/zgelst.f
@@ -0,0 +1,533 @@
+*> \brief ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
+*> or LQ factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'C' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'C': the linear system involves A**H.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by ZGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by ZGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'C'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> modulus of elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of the modulus of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16GEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CZERO
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZGELQT, ZGEQRT, ZGEMLQT, ZGEMQRT, DLABAD,
+ $ ZLASCL, ZLASET, ZTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'ZGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'ZGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL ZGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL ZTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
+ $ N, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL ZGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
+ $ M, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ RETURN
+*
+* End of ZGELST
+*
+ END
diff --git a/TESTING/LIN/alahd.f b/TESTING/LIN/alahd.f
index 2cc0fba063..f0423a23b9 100644
--- a/TESTING/LIN/alahd.f
+++ b/TESTING/LIN/alahd.f
@@ -608,17 +608,18 @@ SUBROUTINE ALAHD( IOUNIT, PATH )
ELSE IF( LSAMEN( 2, P2, 'LS' ) ) THEN
*
* LS: Least Squares driver routines for
-* LS, LSD, LSS, LSX and LSY.
+* LS, LST, TSLS, LSD, LSS, LSX and LSY.
*
WRITE( IOUNIT, FMT = 9984 )PATH
WRITE( IOUNIT, FMT = 9967 )
- WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1
+ WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1, C1, C1
WRITE( IOUNIT, FMT = 9935 )1
WRITE( IOUNIT, FMT = 9931 )2
- WRITE( IOUNIT, FMT = 9933 )3
- WRITE( IOUNIT, FMT = 9935 )4
- WRITE( IOUNIT, FMT = 9934 )5
- WRITE( IOUNIT, FMT = 9932 )6
+ WRITE( IOUNIT, FMT = 9919 )
+ WRITE( IOUNIT, FMT = 9933 )7
+ WRITE( IOUNIT, FMT = 9935 )8
+ WRITE( IOUNIT, FMT = 9934 )9
+ WRITE( IOUNIT, FMT = 9932 )10
WRITE( IOUNIT, FMT = 9920 )
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
@@ -1048,10 +1049,11 @@ SUBROUTINE ALAHD( IOUNIT, PATH )
$ 'check if X is in the row space of A or A'' ',
$ '(overdetermined case)' )
9929 FORMAT( ' Test ratios (1-3: ', A1, 'TZRZF):' )
- 9920 FORMAT( 3X, ' 7-10: same as 3-6', 3X, ' 11-14: same as 3-6' )
- 9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-6: ', A1,
- $ 'GELSY, 7-10: ', A1, 'GELSS, 11-14: ', A1, 'GELSD, 15-16: ',
- $ A1, 'GETSLS)')
+ 9919 FORMAT( 3X, ' 3-4: same as 1-2', 3X, ' 5-6: same as 1-2' )
+ 9920 FORMAT( 3X, ' 11-14: same as 7-10', 3X, ' 15-18: same as 7-10' )
+ 9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-4: ', A1,
+ $ 'GELST, 5-6: ', A1, 'GETSLS, 7-10: ', A1, 'GELSY, 11-14: ',
+ $ A1, 'GETSS, 15-18: ', A1, 'GELSD)' )
9928 FORMAT( 7X, 'where ALPHA = ( 1 + SQRT( 17 ) ) / 8' )
9927 FORMAT( 3X, I2, ': ABS( Largest element in L )', / 12X,
$ ' - ( 1 / ( 1 - ALPHA ) ) + THRESH' )
diff --git a/TESTING/LIN/cdrvls.f b/TESTING/LIN/cdrvls.f
index 7fe189e5fd..ecba705d5f 100644
--- a/TESTING/LIN/cdrvls.f
+++ b/TESTING/LIN/cdrvls.f
@@ -31,7 +31,8 @@
*>
*> \verbatim
*>
-*> CDRVLS tests the least squares driver routines CGELS, CGETSLS, CGELSS, CGELSY
+*> CDRVLS tests the least squares driver routines CGELS, CGELST,
+*> CGETSLS, CGELSS, CGELSY
*> and CGELSD.
*> \endverbatim
*
@@ -211,7 +212,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* .. Parameters ..
INTEGER NTESTS
- PARAMETER ( NTESTS = 16 )
+ PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ONE, ZERO
@@ -228,8 +229,8 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK, LRWORK,
- $ LWORK_CGELS, LWORK_CGETSLS, LWORK_CGELSS,
- $ LWORK_CGELSY, LWORK_CGELSD,
+ $ LWORK_CGELS, LWORK_CGELST, LWORK_CGETSLS,
+ $ LWORK_CGELSS, LWORK_CGELSY, LWORK_CGELSD,
$ LRWORK_CGELSY, LRWORK_CGELSS, LRWORK_CGELSD
REAL EPS, NORMA, NORMB, RCOND
* ..
@@ -249,7 +250,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, CERRLS, CGELS, CGELSD,
- $ CGELSS, CGELSY, CGEMM, CGETSLS, CLACPY,
+ $ CGELSS, CGELST, CGELSY, CGEMM, CGETSLS, CLACPY,
$ CLARNV, CQRT13, CQRT15, CQRT16, CSSCAL,
$ SAXPY, XLAENV
* ..
@@ -334,7 +335,8 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
-* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
+* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
+* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@@ -361,6 +363,10 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL CGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_CGELS = INT( WQ( 1 ) )
+* Compute workspace needed for CGELST
+ CALL CGELST( TRANS, M, N, NRHS, A, LDA,
+ $ B, LDB, WQ, -1, INFO )
+ LWORK_CGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for CGETSLS
CALL CGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@@ -425,21 +431,26 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
-*
+* =====================================================
+* Begin test CGELS
+* =====================================================
IF( IRANK.EQ.1 ) THEN
*
-* Test CGELS
-*
* Generate a matrix of scaling type ISCALE
*
CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 40 INB = 1, NNB
+*
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
- DO 30 ITRAN = 1, 2
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -484,15 +495,20 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 1: Check correctness of results
+* for CGELS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL CQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
+*
+* Test 2: Check correctness of results
+* for CGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
@@ -515,7 +531,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 20 K = 1, 2
+ DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@@ -524,26 +540,34 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 20 CONTINUE
+ END DO
NRUN = NRUN + 2
- 30 CONTINUE
- 40 CONTINUE
-*
-*
-* Test CGETSLS
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test CGELS
+* =====================================================
+* =====================================================
+* Begin test CGELST
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 65 INB = 1, NNB
- MB = NBVAL( INB )
- CALL XLAENV( 1, MB )
- DO 62 IMB = 1, NNB
- NB = NBVAL( IMB )
- CALL XLAENV( 2, NB )
*
- DO 60 ITRAN = 1, 2
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 1, NB )
+ CALL XLAENV( 3, NXVAL( INB ) )
+*
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -560,9 +584,9 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
IF( NCOLS.GT.0 ) THEN
CALL CLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
- CALL CSCAL( NCOLS*NRHS,
- $ CONE / REAL( NCOLS ), WORK,
- $ 1 )
+ CALL CSSCAL( NCOLS*NRHS,
+ $ ONE / REAL( NCOLS ), WORK,
+ $ 1 )
END IF
CALL CGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
@@ -578,31 +602,37 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
- SRNAMT = 'CGETSLS '
- CALL CGETSLS( TRANS, M, N, NRHS, A,
- $ LDA, B, LDB, WORK, LWORK, INFO )
+ SRNAMT = 'CGELST'
+ CALL CGELST( TRANS, M, N, NRHS, A, LDA, B,
+ $ LDB, WORK, LWORK, INFO )
+*
IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'CGETSLS ', INFO, 0,
+ $ CALL ALAERH( PATH, 'CGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 3: Check correctness of results
+* for CGELST, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL CQRT16( TRANS, M, N, NRHS, COPYA,
- $ LDA, B, LDB, C, LDB, WORK2,
- $ RESULT( 15 ) )
+ $ LDA, B, LDB, C, LDB, RWORK,
+ $ RESULT( 3 ) )
+*
+* Test 4: Check correctness of results
+* for CGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
- RESULT( 16 ) = CQRT17( TRANS, 1, M, N,
+ RESULT( 4 ) = CQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@@ -610,7 +640,7 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* Solving overdetermined system
*
- RESULT( 16 ) = CQRT14( TRANS, M, N,
+ RESULT( 4 ) = CQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@@ -618,21 +648,151 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 50 K = 15, 16
+ DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )TRANS, M,
- $ N, NRHS, MB, NB, ITYPE, K,
+ WRITE( NOUT, FMT = 9999 )TRANS, M,
+ $ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 50 CONTINUE
+ END DO
NRUN = NRUN + 2
- 60 CONTINUE
- 62 CONTINUE
- 65 CONTINUE
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test CGELST
+* =====================================================
+* =====================================================
+* Begin test CGELSTSLS
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
+*
+* Generate a matrix of scaling type ISCALE
+*
+ CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
+ $ ISEED )
+*
+* Loop for testing different block sizes MB.
+*
+ DO INB = 1, NNB
+ MB = NBVAL( INB )
+ CALL XLAENV( 1, MB )
+*
+* Loop for testing different block sizes NB.
+*
+ DO IMB = 1, NNB
+ NB = NBVAL( IMB )
+ CALL XLAENV( 2, NB )
+*
+* Loop for testing non-transposed
+* and transposed.
+*
+ DO ITRAN = 1, 2
+ IF( ITRAN.EQ.1 ) THEN
+ TRANS = 'N'
+ NROWS = M
+ NCOLS = N
+ ELSE
+ TRANS = 'C'
+ NROWS = N
+ NCOLS = M
+ END IF
+ LDWORK = MAX( 1, NCOLS )
+*
+* Set up a consistent rhs
+*
+ IF( NCOLS.GT.0 ) THEN
+ CALL CLARNV( 2, ISEED, NCOLS*NRHS,
+ $ WORK )
+ CALL CSCAL( NCOLS*NRHS,
+ $ CONE / REAL( NCOLS ),
+ $ WORK, 1 )
+ END IF
+ CALL CGEMM( TRANS, 'No transpose',
+ $ NROWS, NRHS, NCOLS, CONE,
+ $ COPYA, LDA, WORK, LDWORK,
+ $ CZERO, B, LDB )
+ CALL CLACPY( 'Full', NROWS, NRHS,
+ $ B, LDB, COPYB, LDB )
+*
+* Solve LS or overdetermined system
+*
+ IF( M.GT.0 .AND. N.GT.0 ) THEN
+ CALL CLACPY( 'Full', M, N,
+ $ COPYA, LDA, A, LDA )
+ CALL CLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, B, LDB )
+ END IF
+ SRNAMT = 'CGETSLS '
+ CALL CGETSLS( TRANS, M, N, NRHS, A,
+ $ LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ CALL ALAERH( PATH, 'CGETSLS ', INFO,
+ $ 0, TRANS, M, N, NRHS,
+ $ -1, NB, ITYPE, NFAIL,
+ $ NERRS, NOUT )
+*
+* Test 5: Check correctness of results
+* for CGETSLS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
+*
+ IF( NROWS.GT.0 .AND. NRHS.GT.0 )
+ $ CALL CLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, C, LDB )
+ CALL CQRT16( TRANS, M, N, NRHS,
+ $ COPYA, LDA, B, LDB,
+ $ C, LDB, WORK2,
+ $ RESULT( 5 ) )
+*
+* Test 6: Check correctness of results
+* for CGETSLS.
+*
+ IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
+ $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
+*
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
+*
+ RESULT( 6 ) = CQRT17( TRANS, 1, M,
+ $ N, NRHS, COPYA, LDA,
+ $ B, LDB, COPYB, LDB,
+ $ C, WORK, LWORK )
+ ELSE
+*
+* Solving overdetermined system
+*
+ RESULT( 6 ) = CQRT14( TRANS, M, N,
+ $ NRHS, COPYA, LDA, B,
+ $ LDB, WORK, LWORK )
+ END IF
+*
+* Print information about the tests that
+* did not pass the threshold.
+*
+ DO K = 5, 6
+ IF( RESULT( K ).GE.THRESH ) THEN
+ IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ $ CALL ALAHD( NOUT, PATH )
+ WRITE( NOUT, FMT = 9997 )TRANS,
+ $ M, N, NRHS, MB, NB, ITYPE, K,
+ $ RESULT( K )
+ NFAIL = NFAIL + 1
+ END IF
+ END DO
+ NRUN = NRUN + 2
+ END DO
+ END DO
+ END DO
END IF
+* =====================================================
+* End test CGELSTSLS
+* ====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@@ -680,37 +840,37 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
-* Test 3: Compute relative error in svd
+* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
- RESULT( 3 ) = CQRT12( CRANK, CRANK, A, LDA,
+ RESULT( 7 ) = CQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
-* Test 4: Compute error in solution
+* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 4 ) )
+ $ RESULT( 8 ) )
*
-* Test 5: Check norm of r'*A
+* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
- RESULT( 5 ) = ZERO
+ RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 5 ) = CQRT17( 'No transpose', 1, M,
+ $ RESULT( 9 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 6: Check if x is in the rowspace of A
+* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
- RESULT( 6 ) = ZERO
+ RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
- $ RESULT( 6 ) = CQRT14( 'No transpose', M, N,
+ $ RESULT( 10 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -736,38 +896,38 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
-* Test 7: Compute relative error in svd
+* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 7 ) = SASUM( MNMIN, S, 1 ) /
+ RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
- RESULT( 7 ) = ZERO
+ RESULT( 11 ) = ZERO
END IF
*
-* Test 8: Compute error in solution
+* Test 12: Compute error in solution
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 8 ) )
+ $ RESULT( 12 ) )
*
-* Test 9: Check norm of r'*A
+* Test 13: Check norm of r'*A
*
- RESULT( 9 ) = ZERO
+ RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 9 ) = CQRT17( 'No transpose', 1, M,
+ $ RESULT( 13 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 10: Check if x is in the rowspace of A
+* Test 14: Check if x is in the rowspace of A
*
- RESULT( 10 ) = ZERO
+ RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 10 ) = CQRT14( 'No transpose', M, N,
+ $ RESULT( 14 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -792,45 +952,45 @@ SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 11: Compute relative error in svd
+* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
+ RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
- RESULT( 11 ) = ZERO
+ RESULT( 15 ) = ZERO
END IF
*
-* Test 12: Compute error in solution
+* Test 16: Compute error in solution
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 12 ) )
+ $ RESULT( 16 ) )
*
-* Test 13: Check norm of r'*A
+* Test 17: Check norm of r'*A
*
- RESULT( 13 ) = ZERO
+ RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 13 ) = CQRT17( 'No transpose', 1, M,
+ $ RESULT( 17 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 14: Check if x is in the rowspace of A
+* Test 18: Check if x is in the rowspace of A
*
- RESULT( 14 ) = ZERO
+ RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 14 ) = CQRT14( 'No transpose', M, N,
+ $ RESULT( 18 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
- DO 80 K = 3, 14
+ DO 80 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
diff --git a/TESTING/LIN/cerrls.f b/TESTING/LIN/cerrls.f
index 48e44ad863..fca9439181 100644
--- a/TESTING/LIN/cerrls.f
+++ b/TESTING/LIN/cerrls.f
@@ -22,7 +22,7 @@
*> \verbatim
*>
*> CERRLS tests the error exits for the COMPLEX least squares
-*> driver routines (CGELS, CGELSS, CGELSY, CGELSD).
+*> driver routines (CGELS, CGELST, CGETSLS, CGELSS, CGELSY, CGELSD).
*> \endverbatim
*
* Arguments:
@@ -83,7 +83,8 @@ SUBROUTINE CERRLS( PATH, NUNIT )
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
- EXTERNAL ALAESM, CGELS, CGELSD, CGELSS, CGELSY, CHKXER
+ EXTERNAL ALAESM, CHKXER, CGELS, CGELSD, CGELSS, CGELST,
+ $ CGELSY, CGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -130,10 +131,66 @@ SUBROUTINE CERRLS( PATH, NUNIT )
INFOT = 8
CALL CGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'CGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK )
*
+* CGELST
+*
+ SRNAMT = 'CGELST'
+ INFOT = 1
+ CALL CGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
+*
+* CGETSLS
+*
+ SRNAMT = 'CGETSLS'
+ INFOT = 1
+ CALL CGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
+*
* CGELSS
*
SRNAMT = 'CGELSS'
diff --git a/TESTING/LIN/ddrvls.f b/TESTING/LIN/ddrvls.f
index b64930c10c..b3d07d67f2 100644
--- a/TESTING/LIN/ddrvls.f
+++ b/TESTING/LIN/ddrvls.f
@@ -31,8 +31,8 @@
*>
*> \verbatim
*>
-*> DDRVLS tests the least squares driver routines DGELS, DGETSLS, DGELSS, DGELSY,
-*> and DGELSD.
+*> DDRVLS tests the least squares driver routines DGELS, DGELST,
+*> DGETSLS, DGELSS, DGELSY, and DGELSD.
*> \endverbatim
*
* Arguments:
@@ -211,7 +211,7 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* .. Parameters ..
INTEGER NTESTS
- PARAMETER ( NTESTS = 16 )
+ PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, TWO, ZERO
@@ -225,8 +225,8 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
- $ LWORK_DGELS, LWORK_DGETSLS, LWORK_DGELSS,
- $ LWORK_DGELSY, LWORK_DGELSD
+ $ LWORK_DGELS, LWORK_DGELST, LWORK_DGETSLS,
+ $ LWORK_DGELSS, LWORK_DGELSY, LWORK_DGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
@@ -243,12 +243,12 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS,
- $ DGELSD, DGELSS, DGELSY, DGEMM, DLACPY,
- $ DLARNV, DLASRT, DQRT13, DQRT15, DQRT16, DSCAL,
- $ XLAENV
+ $ DGELSD, DGELSS, DGELST, DGELSY, DGEMM,
+ $ DGETSLS, DLACPY, DLARNV, DQRT13, DQRT15,
+ $ DQRT16, DSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
- INTRINSIC DBLE, INT, LOG, MAX, MIN, SQRT
+ INTRINSIC DBLE, INT, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -330,7 +330,8 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
-* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
+* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
+* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@@ -357,6 +358,10 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL DGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGELS = INT ( WQ ( 1 ) )
+* Compute workspace needed for DGELST
+ CALL DGELST( TRANS, M, N, NRHS, A, LDA,
+ $ B, LDB, WQ, -1, INFO )
+ LWORK_DGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for DGETSLS
CALL DGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@@ -378,9 +383,9 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Compute LIWORK workspace needed for DGELSY and DGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
- LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGETSLS,
- $ LWORK_DGELSY, LWORK_DGELSS,
- $ LWORK_DGELSD )
+ LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGELST,
+ $ LWORK_DGETSLS, LWORK_DGELSY,
+ $ LWORK_DGELSS, LWORK_DGELSD )
END IF
ENDDO
ENDDO
@@ -411,21 +416,26 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
-*
+* =====================================================
+* Begin test DGELS
+* =====================================================
IF( IRANK.EQ.1 ) THEN
*
-* Test DGELS
-*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 40 INB = 1, NNB
+*
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
- DO 30 ITRAN = 1, 2
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -469,20 +479,27 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 1: Check correctness of results
+* for DGELS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
+*
+* Test 2: Check correctness of results
+* for DGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
-* Solving LS system
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
@@ -500,35 +517,42 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 20 K = 1, 2
+ DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )TRANS, M,
+ WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 20 CONTINUE
+ END DO
NRUN = NRUN + 2
- 30 CONTINUE
- 40 CONTINUE
-*
-*
-* Test DGETSLS
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test DGELS
+* =====================================================
+* =====================================================
+* Begin test DGELST
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 65 INB = 1, NNB
- MB = NBVAL( INB )
- CALL XLAENV( 1, MB )
- DO 62 IMB = 1, NNB
- NB = NBVAL( IMB )
- CALL XLAENV( 2, NB )
*
- DO 60 ITRAN = 1, 2
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 1, NB )
+*
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -563,31 +587,38 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
- SRNAMT = 'DGETSLS '
- CALL DGETSLS( TRANS, M, N, NRHS, A,
- $ LDA, B, LDB, WORK, LWORK, INFO )
+ SRNAMT = 'DGELST'
+ CALL DGELST( TRANS, M, N, NRHS, A, LDA, B,
+ $ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DGETSLS ', INFO, 0,
+ $ CALL ALAERH( PATH, 'DGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 3: Check correctness of results
+* for DGELST, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
- $ RESULT( 15 ) )
+ $ RESULT( 3 ) )
+*
+* Test 4: Check correctness of results
+* for DGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
-* Solving LS system
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
- RESULT( 16 ) = DQRT17( TRANS, 1, M, N,
+ RESULT( 4 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@@ -595,7 +626,7 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* Solving overdetermined system
*
- RESULT( 16 ) = DQRT14( TRANS, M, N,
+ RESULT( 4 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@@ -603,21 +634,151 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 50 K = 15, 16
+ DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )TRANS, M,
- $ N, NRHS, MB, NB, ITYPE, K,
+ WRITE( NOUT, FMT = 9999 ) TRANS, M,
+ $ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 50 CONTINUE
+ END DO
NRUN = NRUN + 2
- 60 CONTINUE
- 62 CONTINUE
- 65 CONTINUE
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test DGELST
+* =====================================================
+* =====================================================
+* Begin test DGETSLS
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
+*
+* Generate a matrix of scaling type ISCALE
+*
+ CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
+ $ ISEED )
+*
+* Loop for testing different block sizes MB.
+*
+ DO IMB = 1, NNB
+ MB = NBVAL( IMB )
+ CALL XLAENV( 1, MB )
+*
+* Loop for testing different block sizes NB.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 2, NB )
+*
+* Loop for testing non-transposed
+* and transposed.
+*
+ DO ITRAN = 1, 2
+ IF( ITRAN.EQ.1 ) THEN
+ TRANS = 'N'
+ NROWS = M
+ NCOLS = N
+ ELSE
+ TRANS = 'T'
+ NROWS = N
+ NCOLS = M
+ END IF
+ LDWORK = MAX( 1, NCOLS )
+*
+* Set up a consistent rhs
+*
+ IF( NCOLS.GT.0 ) THEN
+ CALL DLARNV( 2, ISEED, NCOLS*NRHS,
+ $ WORK )
+ CALL DSCAL( NCOLS*NRHS,
+ $ ONE / DBLE( NCOLS ),
+ $ WORK, 1 )
+ END IF
+ CALL DGEMM( TRANS, 'No transpose',
+ $ NROWS, NRHS, NCOLS, ONE,
+ $ COPYA, LDA, WORK, LDWORK,
+ $ ZERO, B, LDB )
+ CALL DLACPY( 'Full', NROWS, NRHS,
+ $ B, LDB, COPYB, LDB )
+*
+* Solve LS or overdetermined system
+*
+ IF( M.GT.0 .AND. N.GT.0 ) THEN
+ CALL DLACPY( 'Full', M, N,
+ $ COPYA, LDA, A, LDA )
+ CALL DLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, B, LDB )
+ END IF
+ SRNAMT = 'DGETSLS'
+ CALL DGETSLS( TRANS, M, N, NRHS,
+ $ A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ CALL ALAERH( PATH, 'DGETSLS', INFO,
+ $ 0, TRANS, M, N, NRHS,
+ $ -1, NB, ITYPE, NFAIL,
+ $ NERRS, NOUT )
+*
+* Test 5: Check correctness of results
+* for DGETSLS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
+*
+ IF( NROWS.GT.0 .AND. NRHS.GT.0 )
+ $ CALL DLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, C, LDB )
+ CALL DQRT16( TRANS, M, N, NRHS,
+ $ COPYA, LDA, B, LDB,
+ $ C, LDB, WORK,
+ $ RESULT( 5 ) )
+*
+* Test 6: Check correctness of results
+* for DGETSLS.
+*
+ IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
+ $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
+*
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
+*
+ RESULT( 6 ) = DQRT17( TRANS, 1, M,
+ $ N, NRHS, COPYA, LDA,
+ $ B, LDB, COPYB, LDB,
+ $ C, WORK, LWORK )
+ ELSE
+*
+* Solving overdetermined system
+*
+ RESULT( 6 ) = DQRT14( TRANS, M, N,
+ $ NRHS, COPYA, LDA,
+ $ B, LDB, WORK, LWORK )
+ END IF
+*
+* Print information about the tests that
+* did not pass the threshold.
+*
+ DO K = 5, 6
+ IF( RESULT( K ).GE.THRESH ) THEN
+ IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ $ CALL ALAHD( NOUT, PATH )
+ WRITE( NOUT, FMT = 9997 ) TRANS,
+ $ M, N, NRHS, MB, NB, ITYPE,
+ $ K, RESULT( K )
+ NFAIL = NFAIL + 1
+ END IF
+ END DO
+ NRUN = NRUN + 2
+ END DO
+ END DO
+ END DO
END IF
+* =====================================================
+* End test DGETSLS
+* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@@ -662,37 +823,37 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 3: Compute relative error in svd
+* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
- RESULT( 3 ) = DQRT12( CRANK, CRANK, A, LDA,
+ RESULT( 7 ) = DQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
-* Test 4: Compute error in solution
+* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 4 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
-* Test 5: Check norm of r'*A
+* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
- RESULT( 5 ) = ZERO
+ RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 5 ) = DQRT17( 'No transpose', 1, M,
+ $ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 6: Check if x is in the rowspace of A
+* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
- RESULT( 6 ) = ZERO
+ RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
- $ RESULT( 6 ) = DQRT14( 'No transpose', M, N,
+ $ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -716,38 +877,38 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
-* Test 7: Compute relative error in svd
+* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 7 ) = DASUM( MNMIN, S, 1 ) /
+ RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
- RESULT( 7 ) = ZERO
+ RESULT( 11 ) = ZERO
END IF
*
-* Test 8: Compute error in solution
+* Test 12: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 8 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 12 ) )
*
-* Test 9: Check norm of r'*A
+* Test 13: Check norm of r'*A
*
- RESULT( 9 ) = ZERO
+ RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
+ $ RESULT( 13 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 10: Check if x is in the rowspace of A
+* Test 14: Check if x is in the rowspace of A
*
- RESULT( 10 ) = ZERO
+ RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
+ $ RESULT( 14 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -776,45 +937,45 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 11: Compute relative error in svd
+* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
+ RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
- RESULT( 11 ) = ZERO
+ RESULT( 15 ) = ZERO
END IF
*
-* Test 12: Compute error in solution
+* Test 16: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 12 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
-* Test 13: Check norm of r'*A
+* Test 17: Check norm of r'*A
*
- RESULT( 13 ) = ZERO
+ RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 13 ) = DQRT17( 'No transpose', 1, M,
+ $ RESULT( 17 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 14: Check if x is in the rowspace of A
+* Test 18: Check if x is in the rowspace of A
*
- RESULT( 14 ) = ZERO
+ RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 14 ) = DQRT14( 'No transpose', M, N,
+ $ RESULT( 18 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
- DO 90 K = 3, 14
+ DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@@ -826,6 +987,12 @@ SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
NRUN = NRUN + 12
*
100 CONTINUE
+
+
+
+
+
+
110 CONTINUE
120 CONTINUE
130 CONTINUE
diff --git a/TESTING/LIN/derrls.f b/TESTING/LIN/derrls.f
index a1f74dec23..09d745238e 100644
--- a/TESTING/LIN/derrls.f
+++ b/TESTING/LIN/derrls.f
@@ -22,7 +22,7 @@
*> \verbatim
*>
*> DERRLS tests the error exits for the DOUBLE PRECISION least squares
-*> driver routines (DGELS, SGELSS, SGELSY, SGELSD).
+*> driver routines (DGELS, DGELST, DGETSLS, SGELSS, SGELSY, SGELSD).
*> \endverbatim
*
* Arguments:
@@ -83,7 +83,8 @@ SUBROUTINE DERRLS( PATH, NUNIT )
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELSY
+ EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELST,
+ $ DGELSY, DGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -130,10 +131,66 @@ SUBROUTINE DERRLS( PATH, NUNIT )
INFOT = 8
CALL DGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK )
*
+* DGELST
+*
+ SRNAMT = 'DGELST'
+ INFOT = 1
+ CALL DGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
+*
+* DGETSLS
+*
+ SRNAMT = 'DGETSLS'
+ INFOT = 1
+ CALL DGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
+*
* DGELSS
*
SRNAMT = 'DGELSS'
diff --git a/TESTING/LIN/sdrvls.f b/TESTING/LIN/sdrvls.f
index b964515037..2baf9a3fb1 100644
--- a/TESTING/LIN/sdrvls.f
+++ b/TESTING/LIN/sdrvls.f
@@ -31,8 +31,8 @@
*>
*> \verbatim
*>
-*> SDRVLS tests the least squares driver routines SGELS, SGETSLS, SGELSS, SGELSY,
-*> and SGELSD.
+*> SDRVLS tests the least squares driver routines SGELS, SGELST,
+*> SGETSLS, SGELSS, SGELSY and SGELSD.
*> \endverbatim
*
* Arguments:
@@ -211,7 +211,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* .. Parameters ..
INTEGER NTESTS
- PARAMETER ( NTESTS = 16 )
+ PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ONE, TWO, ZERO
@@ -225,8 +225,8 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
- $ LWORK_SGELS, LWORK_SGETSLS, LWORK_SGELSS,
- $ LWORK_SGELSY, LWORK_SGELSD
+ $ LWORK_SGELS, LWORK_SGELST, LWORK_SGETSLS,
+ $ LWORK_SGELSS, LWORK_SGELSY, LWORK_SGELSD
REAL EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
@@ -243,12 +243,12 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS,
- $ SGELSD, SGELSS, SGELSY, SGEMM, SLACPY,
- $ SLARNV, SQRT13, SQRT15, SQRT16, SSCAL,
- $ XLAENV, SGETSLS
+ $ SGELSD, SGELSS, SGELST, SGELSY, SGEMM,
+ $ SGETSLS, SLACPY, SLARNV, SQRT13, SQRT15,
+ $ SQRT16, SSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
- INTRINSIC INT, LOG, MAX, MIN, REAL, SQRT
+ INTRINSIC INT, MAX, MIN, REAL, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -330,7 +330,8 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
-* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
+* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
+* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@@ -357,6 +358,10 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL SGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
LWORK_SGELS = INT ( WQ( 1 ) )
+* Compute workspace needed for SGELST
+ CALL SGELST( TRANS, M, N, NRHS, A, LDA,
+ $ B, LDB, WQ, -1, INFO )
+ LWORK_SGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for SGETSLS
CALL SGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
@@ -378,9 +383,9 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Compute LIWORK workspace needed for SGELSY and SGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
- LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGETSLS,
- $ LWORK_SGELSY, LWORK_SGELSS,
- $ LWORK_SGELSD )
+ LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGELST,
+ $ LWORK_SGETSLS, LWORK_SGELSY,
+ $ LWORK_SGELSS, LWORK_SGELSD )
END IF
ENDDO
ENDDO
@@ -411,21 +416,26 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
-*
+* =====================================================
+* Begin test SGELS
+* =====================================================
IF( IRANK.EQ.1 ) THEN
*
-* Test SGELS
-*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 40 INB = 1, NNB
+*
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
- DO 30 ITRAN = 1, 2
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -469,20 +479,27 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 1: Check correctness of results
+* for SGELS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
+*
+* Test 2: Check correctness of results
+* for SGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
-* Solving LS system
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
@@ -500,7 +517,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 20 K = 1, 2
+ DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@@ -509,26 +526,33 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 20 CONTINUE
+ END DO
NRUN = NRUN + 2
- 30 CONTINUE
- 40 CONTINUE
-*
-*
-* Test SGETSLS
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test SGELS
+* =====================================================
+* =====================================================
+* Begin test SGELST
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 65 INB = 1, NNB
- MB = NBVAL( INB )
- CALL XLAENV( 1, MB )
- DO 62 IMB = 1, NNB
- NB = NBVAL( IMB )
- CALL XLAENV( 2, NB )
-*
- DO 60 ITRAN = 1, 2
+*
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 1, NB )
+*
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -563,31 +587,38 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
- SRNAMT = 'SGETSLS '
- CALL SGETSLS( TRANS, M, N, NRHS, A,
- $ LDA, B, LDB, WORK, LWORK, INFO )
+ SRNAMT = 'SGELST'
+ CALL SGELST( TRANS, M, N, NRHS, A, LDA, B,
+ $ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'SGETSLS ', INFO, 0,
+ $ CALL ALAERH( PATH, 'SGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 3: Check correctness of results
+* for SGELST, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
- $ RESULT( 15 ) )
+ $ RESULT( 3 ) )
+*
+* Test 4: Check correctness of results
+* for SGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
-* Solving LS system
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
- RESULT( 16 ) = SQRT17( TRANS, 1, M, N,
+ RESULT( 4 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@@ -595,7 +626,7 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* Solving overdetermined system
*
- RESULT( 16 ) = SQRT14( TRANS, M, N,
+ RESULT( 4 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@@ -603,21 +634,151 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 50 K = 15, 16
+ DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )TRANS, M,
- $ N, NRHS, MB, NB, ITYPE, K,
+ WRITE( NOUT, FMT = 9999 ) TRANS, M,
+ $ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 50 CONTINUE
+ END DO
NRUN = NRUN + 2
- 60 CONTINUE
- 62 CONTINUE
- 65 CONTINUE
+ END DO
+ END DO
END IF
+* =====================================================
+* End test SGELST
+* =====================================================
+* =====================================================
+* Begin test SGETSLS
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
+*
+* Generate a matrix of scaling type ISCALE
+*
+ CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
+ $ ISEED )
+*
+* Loop for testing different block sizes MB.
+*
+ DO IMB = 1, NNB
+ MB = NBVAL( IMB )
+ CALL XLAENV( 1, MB )
+*
+* Loop for testing different block sizes NB.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 2, NB )
+*
+* Loop for testing non-transposed
+* and transposed.
+*
+ DO ITRAN = 1, 2
+ IF( ITRAN.EQ.1 ) THEN
+ TRANS = 'N'
+ NROWS = M
+ NCOLS = N
+ ELSE
+ TRANS = 'T'
+ NROWS = N
+ NCOLS = M
+ END IF
+ LDWORK = MAX( 1, NCOLS )
+*
+* Set up a consistent rhs
+*
+ IF( NCOLS.GT.0 ) THEN
+ CALL SLARNV( 2, ISEED, NCOLS*NRHS,
+ $ WORK )
+ CALL SSCAL( NCOLS*NRHS,
+ $ ONE / REAL( NCOLS ),
+ $ WORK, 1 )
+ END IF
+ CALL SGEMM( TRANS, 'No transpose',
+ $ NROWS, NRHS, NCOLS, ONE,
+ $ COPYA, LDA, WORK, LDWORK,
+ $ ZERO, B, LDB )
+ CALL SLACPY( 'Full', NROWS, NRHS,
+ $ B, LDB, COPYB, LDB )
+*
+* Solve LS or overdetermined system
+*
+ IF( M.GT.0 .AND. N.GT.0 ) THEN
+ CALL SLACPY( 'Full', M, N,
+ $ COPYA, LDA, A, LDA )
+ CALL SLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, B, LDB )
+ END IF
+ SRNAMT = 'SGETSLS'
+ CALL SGETSLS( TRANS, M, N, NRHS,
+ $ A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ CALL ALAERH( PATH, 'SGETSLS', INFO,
+ $ 0, TRANS, M, N, NRHS,
+ $ -1, NB, ITYPE, NFAIL,
+ $ NERRS, NOUT )
+*
+* Test 5: Check correctness of results
+* for SGETSLS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
+*
+ IF( NROWS.GT.0 .AND. NRHS.GT.0 )
+ $ CALL SLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, C, LDB )
+ CALL SQRT16( TRANS, M, N, NRHS,
+ $ COPYA, LDA, B, LDB,
+ $ C, LDB, WORK,
+ $ RESULT( 5 ) )
+*
+* Test 6: Check correctness of results
+* for SGETSLS.
+*
+ IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
+ $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
+*
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
+*
+ RESULT( 6 ) = SQRT17( TRANS, 1, M,
+ $ N, NRHS, COPYA, LDA,
+ $ B, LDB, COPYB, LDB,
+ $ C, WORK, LWORK )
+ ELSE
+*
+* Solving overdetermined system
+*
+ RESULT( 6 ) = SQRT14( TRANS, M, N,
+ $ NRHS, COPYA, LDA,
+ $ B, LDB, WORK, LWORK )
+ END IF
+*
+* Print information about the tests that
+* did not pass the threshold.
+*
+ DO K = 5, 6
+ IF( RESULT( K ).GE.THRESH ) THEN
+ IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ $ CALL ALAHD( NOUT, PATH )
+ WRITE( NOUT, FMT = 9997 ) TRANS,
+ $ M, N, NRHS, MB, NB, ITYPE,
+ $ K, RESULT( K )
+ NFAIL = NFAIL + 1
+ END IF
+ END DO
+ NRUN = NRUN + 2
+ END DO
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test SGETSLS
+* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@@ -662,37 +823,37 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 3: Compute relative error in svd
+* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
- RESULT( 3 ) = SQRT12( CRANK, CRANK, A, LDA,
+ RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
-* Test 4: Compute error in solution
+* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 4 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
-* Test 5: Check norm of r'*A
+* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
- RESULT( 5 ) = ZERO
+ RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 5 ) = SQRT17( 'No transpose', 1, M,
+ $ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 6: Check if x is in the rowspace of A
+* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
- RESULT( 6 ) = ZERO
+ RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
- $ RESULT( 6 ) = SQRT14( 'No transpose', M, N,
+ $ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -716,38 +877,38 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
-* Test 7: Compute relative error in svd
+* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 7 ) = SASUM( MNMIN, S, 1 ) /
+ RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
- RESULT( 7 ) = ZERO
+ RESULT( 11 ) = ZERO
END IF
*
-* Test 8: Compute error in solution
+* Test 12: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 8 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 12 ) )
*
-* Test 9: Check norm of r'*A
+* Test 13: Check norm of r'*A
*
- RESULT( 9 ) = ZERO
+ RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
+ $ RESULT( 13 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 10: Check if x is in the rowspace of A
+* Test 14: Check if x is in the rowspace of A
*
- RESULT( 10 ) = ZERO
+ RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
+ $ RESULT( 14 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -776,45 +937,45 @@ SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 11: Compute relative error in svd
+* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
+ RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
- RESULT( 11 ) = ZERO
+ RESULT( 15 ) = ZERO
END IF
*
-* Test 12: Compute error in solution
+* Test 16: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 12 ) )
+ $ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
-* Test 13: Check norm of r'*A
+* Test 17: Check norm of r'*A
*
- RESULT( 13 ) = ZERO
+ RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 13 ) = SQRT17( 'No transpose', 1, M,
+ $ RESULT( 17 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 14: Check if x is in the rowspace of A
+* Test 18: Check if x is in the rowspace of A
*
- RESULT( 14 ) = ZERO
+ RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 14 ) = SQRT14( 'No transpose', M, N,
+ $ RESULT( 18 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
- DO 90 K = 3, 14
+ DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
diff --git a/TESTING/LIN/serrls.f b/TESTING/LIN/serrls.f
index e6ee4360f9..6c4820066a 100644
--- a/TESTING/LIN/serrls.f
+++ b/TESTING/LIN/serrls.f
@@ -22,7 +22,7 @@
*> \verbatim
*>
*> SERRLS tests the error exits for the REAL least squares
-*> driver routines (SGELS, SGELSS, SGELSY, SGELSD).
+*> driver routines (SGELS, SGELST, SGETSLS, SGELSS, SGELSY, SGELSD).
*> \endverbatim
*
* Arguments:
@@ -83,7 +83,8 @@ SUBROUTINE SERRLS( PATH, NUNIT )
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELSY
+ EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELST,
+ $ SGELSY, SGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -130,10 +131,66 @@ SUBROUTINE SERRLS( PATH, NUNIT )
INFOT = 8
CALL SGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK )
*
+* SGELST
+*
+ SRNAMT = 'SGELST'
+ INFOT = 1
+ CALL SGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
+*
+* SGETSLS
+*
+ SRNAMT = 'SGETSLS'
+ INFOT = 1
+ CALL SGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
+*
* SGELSS
*
SRNAMT = 'SGELSS'
diff --git a/TESTING/LIN/zdrvls.f b/TESTING/LIN/zdrvls.f
index 2eab979054..b21345d302 100644
--- a/TESTING/LIN/zdrvls.f
+++ b/TESTING/LIN/zdrvls.f
@@ -31,8 +31,8 @@
*>
*> \verbatim
*>
-*> ZDRVLS tests the least squares driver routines ZGELS, ZGETSLS, ZGELSS, ZGELSY
-*> and ZGELSD.
+*> ZDRVLS tests the least squares driver routines ZGELS, ZGELST,
+*> ZGETSLS, ZGELSS, ZGELSY and ZGELSD.
*> \endverbatim
*
* Arguments:
@@ -211,7 +211,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* .. Parameters ..
INTEGER NTESTS
- PARAMETER ( NTESTS = 16 )
+ PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, ZERO
@@ -228,8 +228,8 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK, LRWORK,
- $ LWORK_ZGELS, LWORK_ZGETSLS, LWORK_ZGELSS,
- $ LWORK_ZGELSY, LWORK_ZGELSD,
+ $ LWORK_ZGELS, LWORK_ZGELST, LWORK_ZGETSLS,
+ $ LWORK_ZGELSS, LWORK_ZGELSY, LWORK_ZGELSD,
$ LRWORK_ZGELSY, LRWORK_ZGELSS, LRWORK_ZGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
@@ -248,10 +248,10 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
* ..
* .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV,
- $ ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS,
- $ ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
- $ ZQRT16, ZGETSLS
+ EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, ZERRLS, ZGELS,
+ $ ZGELSD, ZGELSS, ZGELST, ZGELSY, ZGEMM,
+ $ ZGETSLS, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
+ $ ZQRT16, ZDSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, INT, SQRT
@@ -334,7 +334,8 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
-* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
+* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
+* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@@ -361,6 +362,10 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL ZGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGELS = INT ( WQ( 1 ) )
+* Compute workspace needed for ZGELST
+ CALL ZGELST( TRANS, M, N, NRHS, A, LDA,
+ $ B, LDB, WQ, -1, INFO )
+ LWORK_ZGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for ZGETSLS
CALL ZGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@@ -390,9 +395,9 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
LRWORK = MAX( LRWORK, LRWORK_ZGELSY,
$ LRWORK_ZGELSS, LRWORK_ZGELSD )
* Compute LWORK workspace needed for all functions
- LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGETSLS,
- $ LWORK_ZGELSY, LWORK_ZGELSS,
- $ LWORK_ZGELSD )
+ LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGELST,
+ $ LWORK_ZGETSLS, LWORK_ZGELSY,
+ $ LWORK_ZGELSS, LWORK_ZGELSD )
END IF
ENDDO
ENDDO
@@ -425,21 +430,26 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
-*
+* =====================================================
+* Begin test ZGELS
+* =====================================================
IF( IRANK.EQ.1 ) THEN
*
-* Test ZGELS
-*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 40 INB = 1, NNB
+*
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
- DO 30 ITRAN = 1, 2
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -484,15 +494,20 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 1: Check correctness of results
+* for ZGELS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
+*
+* Test 2: Check correctness of results
+* for ZGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
@@ -515,7 +530,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 20 K = 1, 2
+ DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@@ -524,26 +539,34 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 20 CONTINUE
+ END DO
NRUN = NRUN + 2
- 30 CONTINUE
- 40 CONTINUE
-*
-*
-* Test ZGETSLS
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test ZGELS
+* =====================================================
+* =====================================================
+* Begin test ZGELST
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
- DO 65 INB = 1, NNB
- MB = NBVAL( INB )
- CALL XLAENV( 1, MB )
- DO 62 IMB = 1, NNB
- NB = NBVAL( IMB )
- CALL XLAENV( 2, NB )
*
- DO 60 ITRAN = 1, 2
+* Loop for testing different block sizes.
+*
+ DO INB = 1, NNB
+ NB = NBVAL( INB )
+ CALL XLAENV( 1, NB )
+ CALL XLAENV( 3, NXVAL( INB ) )
+*
+* Loop for testing non-transposed and transposed.
+*
+ DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@@ -560,9 +583,9 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
- CALL ZSCAL( NCOLS*NRHS,
- $ CONE / DBLE( NCOLS ), WORK,
- $ 1 )
+ CALL ZDSCAL( NCOLS*NRHS,
+ $ ONE / DBLE( NCOLS ), WORK,
+ $ 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
@@ -578,31 +601,37 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
- SRNAMT = 'ZGETSLS '
- CALL ZGETSLS( TRANS, M, N, NRHS, A,
- $ LDA, B, LDB, WORK, LWORK, INFO )
+ SRNAMT = 'ZGELST'
+ CALL ZGELST( TRANS, M, N, NRHS, A, LDA, B,
+ $ LDB, WORK, LWORK, INFO )
+*
IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZGETSLS ', INFO, 0,
+ $ CALL ALAERH( PATH, 'ZGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
-* Check correctness of results
+* Test 3: Check correctness of results
+* for ZGELST, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
- LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
- $ LDA, B, LDB, C, LDB, WORK2,
- $ RESULT( 15 ) )
+ $ LDA, B, LDB, C, LDB, RWORK,
+ $ RESULT( 3 ) )
+*
+* Test 4: Check correctness of results
+* for ZGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
- RESULT( 16 ) = ZQRT17( TRANS, 1, M, N,
+ RESULT( 4 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@@ -610,7 +639,7 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* Solving overdetermined system
*
- RESULT( 16 ) = ZQRT14( TRANS, M, N,
+ RESULT( 4 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@@ -618,21 +647,151 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* Print information about the tests that
* did not pass the threshold.
*
- DO 50 K = 15, 16
+ DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )TRANS, M,
- $ N, NRHS, MB, NB, ITYPE, K,
+ WRITE( NOUT, FMT = 9999 )TRANS, M,
+ $ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
- 50 CONTINUE
+ END DO
NRUN = NRUN + 2
- 60 CONTINUE
- 62 CONTINUE
- 65 CONTINUE
+ END DO
+ END DO
+ END IF
+* =====================================================
+* End test ZGELST
+* =====================================================
+* =====================================================
+* Begin test ZGELSTSLS
+* =====================================================
+ IF( IRANK.EQ.1 ) THEN
+*
+* Generate a matrix of scaling type ISCALE
+*
+ CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
+ $ ISEED )
+*
+* Loop for testing different block sizes MB.
+*
+ DO INB = 1, NNB
+ MB = NBVAL( INB )
+ CALL XLAENV( 1, MB )
+*
+* Loop for testing different block sizes NB.
+*
+ DO IMB = 1, NNB
+ NB = NBVAL( IMB )
+ CALL XLAENV( 2, NB )
+*
+* Loop for testing non-transposed
+* and transposed.
+*
+ DO ITRAN = 1, 2
+ IF( ITRAN.EQ.1 ) THEN
+ TRANS = 'N'
+ NROWS = M
+ NCOLS = N
+ ELSE
+ TRANS = 'C'
+ NROWS = N
+ NCOLS = M
+ END IF
+ LDWORK = MAX( 1, NCOLS )
+*
+* Set up a consistent rhs
+*
+ IF( NCOLS.GT.0 ) THEN
+ CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
+ $ WORK )
+ CALL ZSCAL( NCOLS*NRHS,
+ $ CONE / DBLE( NCOLS ),
+ $ WORK, 1 )
+ END IF
+ CALL ZGEMM( TRANS, 'No transpose',
+ $ NROWS, NRHS, NCOLS, CONE,
+ $ COPYA, LDA, WORK, LDWORK,
+ $ CZERO, B, LDB )
+ CALL ZLACPY( 'Full', NROWS, NRHS,
+ $ B, LDB, COPYB, LDB )
+*
+* Solve LS or overdetermined system
+*
+ IF( M.GT.0 .AND. N.GT.0 ) THEN
+ CALL ZLACPY( 'Full', M, N,
+ $ COPYA, LDA, A, LDA )
+ CALL ZLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, B, LDB )
+ END IF
+ SRNAMT = 'ZGETSLS '
+ CALL ZGETSLS( TRANS, M, N, NRHS, A,
+ $ LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ CALL ALAERH( PATH, 'ZGETSLS ', INFO,
+ $ 0, TRANS, M, N, NRHS,
+ $ -1, NB, ITYPE, NFAIL,
+ $ NERRS, NOUT )
+*
+* Test 5: Check correctness of results
+* for ZGETSLS, compute the residual:
+* RESID = norm(B - A*X) /
+* / ( max(m,n) * norm(A) * norm(X) * EPS )
+*
+ IF( NROWS.GT.0 .AND. NRHS.GT.0 )
+ $ CALL ZLACPY( 'Full', NROWS, NRHS,
+ $ COPYB, LDB, C, LDB )
+ CALL ZQRT16( TRANS, M, N, NRHS,
+ $ COPYA, LDA, B, LDB,
+ $ C, LDB, WORK2,
+ $ RESULT( 5 ) )
+*
+* Test 6: Check correctness of results
+* for ZGETSLS.
+*
+ IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
+ $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
+*
+* Solving LS system, compute:
+* r = norm((B- A*X)**T * A) /
+* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
+*
+ RESULT( 6 ) = ZQRT17( TRANS, 1, M,
+ $ N, NRHS, COPYA, LDA,
+ $ B, LDB, COPYB, LDB,
+ $ C, WORK, LWORK )
+ ELSE
+*
+* Solving overdetermined system
+*
+ RESULT( 6 ) = ZQRT14( TRANS, M, N,
+ $ NRHS, COPYA, LDA, B,
+ $ LDB, WORK, LWORK )
+ END IF
+*
+* Print information about the tests that
+* did not pass the threshold.
+*
+ DO K = 5, 6
+ IF( RESULT( K ).GE.THRESH ) THEN
+ IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ $ CALL ALAHD( NOUT, PATH )
+ WRITE( NOUT, FMT = 9997 )TRANS,
+ $ M, N, NRHS, MB, NB, ITYPE, K,
+ $ RESULT( K )
+ NFAIL = NFAIL + 1
+ END IF
+ END DO
+ NRUN = NRUN + 2
+ END DO
+ END DO
+ END DO
END IF
+* =====================================================
+* End test ZGELSTSLS
+* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@@ -680,37 +839,37 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
-* Test 3: Compute relative error in svd
+* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
- RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA,
+ RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
-* Test 4: Compute error in solution
+* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 4 ) )
+ $ RESULT( 8 ) )
*
-* Test 5: Check norm of r'*A
+* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
- RESULT( 5 ) = ZERO
+ RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 5 ) = ZQRT17( 'No transpose', 1, M,
+ $ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 6: Check if x is in the rowspace of A
+* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
- RESULT( 6 ) = ZERO
+ RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
- $ RESULT( 6 ) = ZQRT14( 'No transpose', M, N,
+ $ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -736,38 +895,38 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
-* Test 7: Compute relative error in svd
+* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 7 ) = DASUM( MNMIN, S, 1 ) /
+ RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
- RESULT( 7 ) = ZERO
+ RESULT( 11 ) = ZERO
END IF
*
-* Test 8: Compute error in solution
+* Test 12: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 8 ) )
+ $ RESULT( 12 ) )
*
-* Test 9: Check norm of r'*A
+* Test 13: Check norm of r'*A
*
- RESULT( 9 ) = ZERO
+ RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
+ $ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 10: Check if x is in the rowspace of A
+* Test 14: Check if x is in the rowspace of A
*
- RESULT( 10 ) = ZERO
+ RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
+ $ RESULT( 14 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@@ -792,45 +951,45 @@ SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
-* Test 11: Compute relative error in svd
+* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
+ RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
- RESULT( 11 ) = ZERO
+ RESULT( 15 ) = ZERO
END IF
*
-* Test 12: Compute error in solution
+* Test 16: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
- $ RESULT( 12 ) )
+ $ RESULT( 16 ) )
*
-* Test 13: Check norm of r'*A
+* Test 17: Check norm of r'*A
*
- RESULT( 13 ) = ZERO
+ RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
- $ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M,
+ $ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
-* Test 14: Check if x is in the rowspace of A
+* Test 18: Check if x is in the rowspace of A
*
- RESULT( 14 ) = ZERO
+ RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
- $ RESULT( 14 ) = ZQRT14( 'No transpose', M, N,
+ $ RESULT( 18 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
- DO 80 K = 3, 14
+ DO 80 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
diff --git a/TESTING/LIN/zerrls.f b/TESTING/LIN/zerrls.f
index 66e56c8c6b..22f049ee06 100644
--- a/TESTING/LIN/zerrls.f
+++ b/TESTING/LIN/zerrls.f
@@ -22,7 +22,7 @@
*> \verbatim
*>
*> ZERRLS tests the error exits for the COMPLEX*16 least squares
-*> driver routines (ZGELS, CGELSS, CGELSY, CGELSD).
+*> driver routines (ZGELS, ZGELST, ZGETSLS, CGELSS, CGELSY, CGELSD).
*> \endverbatim
*
* Arguments:
@@ -83,7 +83,8 @@ SUBROUTINE ZERRLS( PATH, NUNIT )
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELSY
+ EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELST,
+ $ ZGELSY, ZGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -130,10 +131,66 @@ SUBROUTINE ZERRLS( PATH, NUNIT )
INFOT = 8
CALL ZGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'ZGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
*
+* ZGELST
+*
+ SRNAMT = 'ZGELST'
+ INFOT = 1
+ CALL ZGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
+*
+* ZGETSLS
+*
+ SRNAMT = 'ZGETSLS'
+ INFOT = 1
+ CALL ZGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
+ CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
+*
* ZGELSS
*
SRNAMT = 'ZGELSS'