Skip to content

Commit 457afcf

Browse files
committed
comments unified: homgenize notation for transpose (**T) and conjugate transpose (**H)
This commit continues changes made in: * f295357 2011-04-02 * d9d50d1 2011-04-02 * 16973f0 2011-04-08
1 parent e3950c0 commit 457afcf

26 files changed

+130
-124
lines changed

TESTING/EIG/cbdt01.f

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -28,13 +28,13 @@
2828
*> \verbatim
2929
*>
3030
*> CBDT01 reconstructs a general matrix A from its bidiagonal form
31-
*> A = Q * B * P'
32-
*> where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
31+
*> A = Q * B * P**H
32+
*> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary
3333
*> matrices and B is bidiagonal.
3434
*>
3535
*> The test ratio to test the reduction is
36-
*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
37-
*> where PT = P' and EPS is the machine precision.
36+
*> RESID = norm( A - Q * B * P**H ) / ( n * norm(A) * EPS )
37+
*> where EPS is the machine precision.
3838
*> \endverbatim
3939
*
4040
* Arguments:
@@ -49,7 +49,7 @@
4949
*> \param[in] N
5050
*> \verbatim
5151
*> N is INTEGER
52-
*> The number of columns of the matrices A and P'.
52+
*> The number of columns of the matrices A and P**H.
5353
*> \endverbatim
5454
*>
5555
*> \param[in] KD
@@ -78,7 +78,7 @@
7878
*> \verbatim
7979
*> Q is COMPLEX array, dimension (LDQ,N)
8080
*> The m by min(m,n) unitary matrix Q in the reduction
81-
*> A = Q * B * P'.
81+
*> A = Q * B * P**H.
8282
*> \endverbatim
8383
*>
8484
*> \param[in] LDQ
@@ -103,8 +103,8 @@
103103
*> \param[in] PT
104104
*> \verbatim
105105
*> PT is COMPLEX array, dimension (LDPT,N)
106-
*> The min(m,n) by n unitary matrix P' in the reduction
107-
*> A = Q * B * P'.
106+
*> The min(m,n) by n unitary matrix P**H in the reduction
107+
*> A = Q * B * P**H.
108108
*> \endverbatim
109109
*>
110110
*> \param[in] LDPT
@@ -127,7 +127,7 @@
127127
*> \param[out] RESID
128128
*> \verbatim
129129
*> RESID is REAL
130-
*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
130+
*> The test ratio: norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
131131
*> \endverbatim
132132
*
133133
* Authors:
@@ -187,7 +187,7 @@ SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
187187
RETURN
188188
END IF
189189
*
190-
* Compute A - Q * B * P' one column at a time.
190+
* Compute A - Q * B * P**H one column at a time.
191191
*
192192
RESID = ZERO
193193
IF( KD.NE.0 ) THEN
@@ -265,7 +265,7 @@ SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
265265
END IF
266266
END IF
267267
*
268-
* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
268+
* Compute norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
269269
*
270270
ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
271271
EPS = SLAMCH( 'Precision' )

TESTING/EIG/cbdt02.f

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,8 @@
2727
*>
2828
*> \verbatim
2929
*>
30-
*> CBDT02 tests the change of basis C = U' * B by computing the residual
30+
*> CBDT02 tests the change of basis C = U**H * B by computing the
31+
*> residual
3132
*>
3233
*> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
3334
*>
@@ -66,7 +67,7 @@
6667
*> \param[in] C
6768
*> \verbatim
6869
*> C is COMPLEX array, dimension (LDC,N)
69-
*> The m by n matrix C, assumed to contain U' * B.
70+
*> The m by n matrix C, assumed to contain U**H * B.
7071
*> \endverbatim
7172
*>
7273
*> \param[in] LDC

TESTING/EIG/dbdt01.f

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -27,13 +27,13 @@
2727
*> \verbatim
2828
*>
2929
*> DBDT01 reconstructs a general matrix A from its bidiagonal form
30-
*> A = Q * B * P'
31-
*> where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
30+
*> A = Q * B * P**T
31+
*> where Q (m by min(m,n)) and P**T (min(m,n) by n) are orthogonal
3232
*> matrices and B is bidiagonal.
3333
*>
3434
*> The test ratio to test the reduction is
35-
*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
36-
*> where PT = P' and EPS is the machine precision.
35+
*> RESID = norm( A - Q * B * P**T ) / ( n * norm(A) * EPS )
36+
*> where EPS is the machine precision.
3737
*> \endverbatim
3838
*
3939
* Arguments:
@@ -48,7 +48,7 @@
4848
*> \param[in] N
4949
*> \verbatim
5050
*> N is INTEGER
51-
*> The number of columns of the matrices A and P'.
51+
*> The number of columns of the matrices A and P**T.
5252
*> \endverbatim
5353
*>
5454
*> \param[in] KD
@@ -77,7 +77,7 @@
7777
*> \verbatim
7878
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
7979
*> The m by min(m,n) orthogonal matrix Q in the reduction
80-
*> A = Q * B * P'.
80+
*> A = Q * B * P**T.
8181
*> \endverbatim
8282
*>
8383
*> \param[in] LDQ
@@ -102,8 +102,8 @@
102102
*> \param[in] PT
103103
*> \verbatim
104104
*> PT is DOUBLE PRECISION array, dimension (LDPT,N)
105-
*> The min(m,n) by n orthogonal matrix P' in the reduction
106-
*> A = Q * B * P'.
105+
*> The min(m,n) by n orthogonal matrix P**T in the reduction
106+
*> A = Q * B * P**T.
107107
*> \endverbatim
108108
*>
109109
*> \param[in] LDPT
@@ -121,7 +121,8 @@
121121
*> \param[out] RESID
122122
*> \verbatim
123123
*> RESID is DOUBLE PRECISION
124-
*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
124+
*> The test ratio:
125+
*> norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
125126
*> \endverbatim
126127
*
127128
* Authors:
@@ -180,7 +181,7 @@ SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
180181
RETURN
181182
END IF
182183
*
183-
* Compute A - Q * B * P' one column at a time.
184+
* Compute A - Q * B * P**T one column at a time.
184185
*
185186
RESID = ZERO
186187
IF( KD.NE.0 ) THEN
@@ -258,7 +259,7 @@ SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
258259
END IF
259260
END IF
260261
*
261-
* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
262+
* Compute norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
262263
*
263264
ANORM = DLANGE( '1', M, N, A, LDA, WORK )
264265
EPS = DLAMCH( 'Precision' )

TESTING/EIG/dbdt02.f

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,8 @@
2525
*>
2626
*> \verbatim
2727
*>
28-
*> DBDT02 tests the change of basis C = U' * B by computing the residual
28+
*> DBDT02 tests the change of basis C = U**H * B by computing the
29+
*> residual
2930
*>
3031
*> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
3132
*>
@@ -64,7 +65,7 @@
6465
*> \param[in] C
6566
*> \verbatim
6667
*> C is DOUBLE PRECISION array, dimension (LDC,N)
67-
*> The m by n matrix C, assumed to contain U' * B.
68+
*> The m by n matrix C, assumed to contain U**H * B.
6869
*> \endverbatim
6970
*>
7071
*> \param[in] LDC

TESTING/EIG/dlarhs.f

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
*> DLARHS chooses a set of NRHS random solution vectors and sets
3131
*> up the right hand sides for the linear system
3232
*> op( A ) * X = B,
33-
*> where op( A ) may be A or A' (transpose of A).
33+
*> where op( A ) = A or A**T, depending on TRANS.
3434
*> \endverbatim
3535
*
3636
* Arguments:
@@ -81,8 +81,8 @@
8181
*> TRANS is CHARACTER*1
8282
*> Specifies the operation applied to the matrix A.
8383
*> = 'N': System is A * x = b
84-
*> = 'T': System is A'* x = b
85-
*> = 'C': System is A'* x = b
84+
*> = 'T': B := A**T * X (Transpose)
85+
*> = 'C': B := A**H * X (Conjugate transpose = Transpose)
8686
*> \endverbatim
8787
*>
8888
*> \param[in] M

TESTING/EIG/sbdt01.f

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -27,13 +27,13 @@
2727
*> \verbatim
2828
*>
2929
*> SBDT01 reconstructs a general matrix A from its bidiagonal form
30-
*> A = Q * B * P'
31-
*> where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
30+
*> A = Q * B * P**T
31+
*> where Q (m by min(m,n)) and P**T (min(m,n) by n) are orthogonal
3232
*> matrices and B is bidiagonal.
3333
*>
3434
*> The test ratio to test the reduction is
35-
*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
36-
*> where PT = P' and EPS is the machine precision.
35+
*> RESID = norm( A - Q * B * P**T ) / ( n * norm(A) * EPS )
36+
*> where EPS is the machine precision.
3737
*> \endverbatim
3838
*
3939
* Arguments:
@@ -48,7 +48,7 @@
4848
*> \param[in] N
4949
*> \verbatim
5050
*> N is INTEGER
51-
*> The number of columns of the matrices A and P'.
51+
*> The number of columns of the matrices A and P**T.
5252
*> \endverbatim
5353
*>
5454
*> \param[in] KD
@@ -77,7 +77,7 @@
7777
*> \verbatim
7878
*> Q is REAL array, dimension (LDQ,N)
7979
*> The m by min(m,n) orthogonal matrix Q in the reduction
80-
*> A = Q * B * P'.
80+
*> A = Q * B * P**T.
8181
*> \endverbatim
8282
*>
8383
*> \param[in] LDQ
@@ -102,8 +102,8 @@
102102
*> \param[in] PT
103103
*> \verbatim
104104
*> PT is REAL array, dimension (LDPT,N)
105-
*> The min(m,n) by n orthogonal matrix P' in the reduction
106-
*> A = Q * B * P'.
105+
*> The min(m,n) by n orthogonal matrix P**T in the reduction
106+
*> A = Q * B * P**T.
107107
*> \endverbatim
108108
*>
109109
*> \param[in] LDPT
@@ -121,7 +121,8 @@
121121
*> \param[out] RESID
122122
*> \verbatim
123123
*> RESID is REAL
124-
*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
124+
*> The test ratio:
125+
*> norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
125126
*> \endverbatim
126127
*
127128
* Authors:
@@ -180,7 +181,7 @@ SUBROUTINE SBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
180181
RETURN
181182
END IF
182183
*
183-
* Compute A - Q * B * P' one column at a time.
184+
* Compute A - Q * B * P**T one column at a time.
184185
*
185186
RESID = ZERO
186187
IF( KD.NE.0 ) THEN
@@ -258,7 +259,7 @@ SUBROUTINE SBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
258259
END IF
259260
END IF
260261
*
261-
* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
262+
* Compute norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
262263
*
263264
ANORM = SLANGE( '1', M, N, A, LDA, WORK )
264265
EPS = SLAMCH( 'Precision' )

TESTING/EIG/sbdt02.f

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,8 @@
2525
*>
2626
*> \verbatim
2727
*>
28-
*> SBDT02 tests the change of basis C = U' * B by computing the residual
28+
*> SBDT02 tests the change of basis C = U**H * B by computing the
29+
*> residual
2930
*>
3031
*> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
3132
*>
@@ -64,7 +65,7 @@
6465
*> \param[in] C
6566
*> \verbatim
6667
*> C is REAL array, dimension (LDC,N)
67-
*> The m by n matrix C, assumed to contain U' * B.
68+
*> The m by n matrix C, assumed to contain U**H * B.
6869
*> \endverbatim
6970
*>
7071
*> \param[in] LDC

TESTING/EIG/slarhs.f

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
*> SLARHS chooses a set of NRHS random solution vectors and sets
3131
*> up the right hand sides for the linear system
3232
*> op( A ) * X = B,
33-
*> where op( A ) may be A or A' (transpose of A).
33+
*> where op( A ) = A or A**T, depending on TRANS.
3434
*> \endverbatim
3535
*
3636
* Arguments:
@@ -81,8 +81,8 @@
8181
*> TRANS is CHARACTER*1
8282
*> Specifies the operation applied to the matrix A.
8383
*> = 'N': System is A * x = b
84-
*> = 'T': System is A'* x = b
85-
*> = 'C': System is A'* x = b
84+
*> = 'T': B := A**T * X (Transpose)
85+
*> = 'C': B := A**H * X (Conjugate transpose = Transpose)
8686
*> \endverbatim
8787
*>
8888
*> \param[in] M

TESTING/EIG/zbdt01.f

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -28,13 +28,13 @@
2828
*> \verbatim
2929
*>
3030
*> ZBDT01 reconstructs a general matrix A from its bidiagonal form
31-
*> A = Q * B * P'
32-
*> where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
31+
*> A = Q * B * P**H
32+
*> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary
3333
*> matrices and B is bidiagonal.
3434
*>
3535
*> The test ratio to test the reduction is
36-
*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
37-
*> where PT = P' and EPS is the machine precision.
36+
*> RESID = norm( A - Q * B * P**H ) / ( n * norm(A) * EPS )
37+
*> where EPS is the machine precision.
3838
*> \endverbatim
3939
*
4040
* Arguments:
@@ -49,7 +49,7 @@
4949
*> \param[in] N
5050
*> \verbatim
5151
*> N is INTEGER
52-
*> The number of columns of the matrices A and P'.
52+
*> The number of columns of the matrices A and P**H.
5353
*> \endverbatim
5454
*>
5555
*> \param[in] KD
@@ -78,7 +78,7 @@
7878
*> \verbatim
7979
*> Q is COMPLEX*16 array, dimension (LDQ,N)
8080
*> The m by min(m,n) unitary matrix Q in the reduction
81-
*> A = Q * B * P'.
81+
*> A = Q * B * P**H.
8282
*> \endverbatim
8383
*>
8484
*> \param[in] LDQ
@@ -103,8 +103,8 @@
103103
*> \param[in] PT
104104
*> \verbatim
105105
*> PT is COMPLEX*16 array, dimension (LDPT,N)
106-
*> The min(m,n) by n unitary matrix P' in the reduction
107-
*> A = Q * B * P'.
106+
*> The min(m,n) by n unitary matrix P**H in the reduction
107+
*> A = Q * B * P**H.
108108
*> \endverbatim
109109
*>
110110
*> \param[in] LDPT
@@ -127,7 +127,8 @@
127127
*> \param[out] RESID
128128
*> \verbatim
129129
*> RESID is DOUBLE PRECISION
130-
*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
130+
*> The test ratio:
131+
*> norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
131132
*> \endverbatim
132133
*
133134
* Authors:
@@ -187,7 +188,7 @@ SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
187188
RETURN
188189
END IF
189190
*
190-
* Compute A - Q * B * P' one column at a time.
191+
* Compute A - Q * B * P**H one column at a time.
191192
*
192193
RESID = ZERO
193194
IF( KD.NE.0 ) THEN
@@ -265,7 +266,7 @@ SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
265266
END IF
266267
END IF
267268
*
268-
* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
269+
* Compute norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
269270
*
270271
ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
271272
EPS = DLAMCH( 'Precision' )

0 commit comments

Comments
 (0)