@@ -31,7 +31,7 @@ def test_tf_model_serialization(env):
3131 'minbatchtimeout' , 1000 , 'INPUTS' , 2 , 'a' , 'b' , 'OUTPUTS' , 1 , 'mul' , 'BLOB' , tf_model )
3232
3333 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
34- env .restartAndReload (timeout_sec = 120 )
34+ env .restartAndReload (timeout_sec = 300 )
3535 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
3636 = con .execute_command ("AI.MODELGET" , key_name , "META" )
3737 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -42,7 +42,7 @@ def test_tf_model_serialization(env):
4242 con .execute_command ('AI.MODELSTORE' , key_name , 'TF' , DEVICE , 'TAG' , 'TF_GRAPH1' , 'batchsize' , 4 , 'minbatchsize' , 2 ,
4343 'INPUTS' , 2 , 'a' , 'b' , 'OUTPUTS' , 1 , 'mul' , 'BLOB' , tf_model )
4444 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
45- env .restartAndReload (timeout_sec = 120 )
45+ env .restartAndReload (timeout_sec = 300 )
4646 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
4747 = con .execute_command ("AI.MODELGET" , key_name , "META" )
4848 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -52,7 +52,7 @@ def test_tf_model_serialization(env):
5252 con .execute_command ('AI.MODELSTORE' , key_name , 'TF' , DEVICE , 'TAG' , 'TF_GRAPH2' , 'batchsize' , 4 ,
5353 'INPUTS' , 2 , 'a' , 'b' , 'OUTPUTS' , 1 , 'mul' , 'BLOB' , tf_model )
5454 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
55- env .restartAndReload (timeout_sec = 120 )
55+ env .restartAndReload (timeout_sec = 300 )
5656 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
5757 = con .execute_command ("AI.MODELGET" , key_name , "META" )
5858 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -62,7 +62,7 @@ def test_tf_model_serialization(env):
6262 con .execute_command ('AI.MODELSTORE' , key_name , 'TF' , DEVICE , 'TAG' , 'TF_GRAPH3' ,
6363 'INPUTS' , 2 , 'a' , 'b' , 'OUTPUTS' , 1 , 'mul' , 'BLOB' , tf_model )
6464 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
65- env .restartAndReload (timeout_sec = 120 )
65+ env .restartAndReload (timeout_sec = 300 )
6666 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
6767 = con .execute_command ("AI.MODELGET" , key_name , "META" )
6868 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -89,7 +89,7 @@ def test_torch_model_serialization(env):
8989 'minbatchtimeout' , 1000 , 'BLOB' , torch_model )
9090
9191 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
92- env .restartAndReload (timeout_sec = 120 )
92+ env .restartAndReload (timeout_sec = 300 )
9393 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
9494 = con .execute_command ("AI.MODELGET" , key_name , "META" )
9595 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -99,7 +99,7 @@ def test_torch_model_serialization(env):
9999 # Reinsert the model (without minbatchtimeout)
100100 con .execute_command ('AI.MODELSTORE' , key_name , 'TORCH' , DEVICE , 'TAG' , 'PT_MINIMAL1' , 'batchsize' , 4 , 'minbatchsize' , 2 ,
101101 'BLOB' , torch_model )
102- env .restartAndReload (timeout_sec = 120 )
102+ env .restartAndReload (timeout_sec = 300 )
103103 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
104104 = con .execute_command ("AI.MODELGET" , key_name , "META" )
105105 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -108,7 +108,7 @@ def test_torch_model_serialization(env):
108108 # Reinsert the model (without minbatch)
109109 con .execute_command ('AI.MODELSTORE' , key_name , 'TORCH' , DEVICE , 'TAG' , 'PT_MINIMAL2' , 'batchsize' , 4 ,
110110 'BLOB' , torch_model )
111- env .restartAndReload (timeout_sec = 120 )
111+ env .restartAndReload (timeout_sec = 300 )
112112 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
113113 = con .execute_command ("AI.MODELGET" , key_name , "META" )
114114 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -117,7 +117,7 @@ def test_torch_model_serialization(env):
117117 # Reinsert the model (without batching)
118118 con .execute_command ('AI.MODELSTORE' , key_name , 'TORCH' , DEVICE , 'TAG' , 'PT_MINIMAL3' ,
119119 'BLOB' , torch_model )
120- env .restartAndReload (timeout_sec = 120 )
120+ env .restartAndReload (timeout_sec = 300 )
121121 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
122122 = con .execute_command ("AI.MODELGET" , key_name , "META" )
123123 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -144,7 +144,7 @@ def test_torch_script_serialization(env):
144144 con .execute_command ('AI.SCRIPTSTORE' , key_name , DEVICE , 'TAG' , 'TORCH_SCRIPT' , 'ENTRY_POINTS' , 2 , 'bar' , 'bar_variadic' , 'SOURCE' , torch_script )
145145
146146 # Redis should save the stored script by calling the AOF rewrite callback and then reload from AOF.
147- env .restartAndReload (timeout_sec = 120 )
147+ env .restartAndReload (timeout_sec = 300 )
148148 _ , device , _ , tag , _ , entry_points = con .execute_command ("AI.SCRIPTGET" , key_name , "META" )
149149 env .assertEqual ([device , tag , entry_points ], [DEVICE .encode (), b"TORCH_SCRIPT" , [b'bar' , b'bar_variadic' ]])
150150 torch_script_run (env , key_name )
@@ -165,7 +165,7 @@ def test_onnx_serialization(env):
165165 con .execute_command ('AI.MODELSTORE' , key_name , 'ONNX' , DEVICE , 'TAG' , 'ONNX_LINEAR_IRIS' , 'batchsize' , 4 , 'minbatchsize' , 2 ,
166166 'minbatchtimeout' , 1000 , 'BLOB' , onnx_model )
167167 # Redis should save the stored model by calling the AOF rewrite callback and then reload from AOF.
168- env .restartAndReload (timeout_sec = 120 )
168+ env .restartAndReload (timeout_sec = 300 )
169169 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
170170 = con .execute_command ("AI.MODELGET" , key_name , "META" )
171171 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -175,7 +175,7 @@ def test_onnx_serialization(env):
175175 # Reinsert the model (without minbatchtimeout)
176176 con .execute_command ('AI.MODELSTORE' , key_name , 'ONNX' , DEVICE , 'TAG' , 'ONNX_LINEAR_IRIS1' , 'batchsize' , 4 ,
177177 'minbatchsize' , 2 , 'BLOB' , onnx_model )
178- env .restartAndReload (timeout_sec = 120 )
178+ env .restartAndReload (timeout_sec = 300 )
179179 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
180180 = con .execute_command ("AI.MODELGET" , key_name , "META" )
181181 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -184,7 +184,7 @@ def test_onnx_serialization(env):
184184 # Reinsert the model (without minbatch)
185185 con .execute_command ('AI.MODELSTORE' , key_name , 'ONNX' , DEVICE , 'TAG' , 'ONNX_LINEAR_IRIS2' , 'batchsize' , 4 ,
186186 'BLOB' , onnx_model )
187- env .restartAndReload (timeout_sec = 120 )
187+ env .restartAndReload (timeout_sec = 300 )
188188 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
189189 = con .execute_command ("AI.MODELGET" , key_name , "META" )
190190 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -193,7 +193,7 @@ def test_onnx_serialization(env):
193193 # Reinsert the model (without batching)
194194 con .execute_command ('AI.MODELSTORE' , key_name , 'ONNX' , DEVICE , 'TAG' , 'ONNX_LINEAR_IRIS3' ,
195195 'BLOB' , onnx_model )
196- env .restartAndReload (timeout_sec = 120 )
196+ env .restartAndReload (timeout_sec = 300 )
197197 _ , backend , _ , device , _ , tag , _ , batchsize , _ , minbatchsize , _ , inputs , _ , outputs , _ , minbatchtimeout \
198198 = con .execute_command ("AI.MODELGET" , key_name , "META" )
199199 env .assertEqual ([backend , device , tag , batchsize , minbatchsize , minbatchtimeout , inputs , outputs ],
@@ -205,7 +205,7 @@ def test_tensor_serialization(env):
205205 con = get_connection (env , key_name )
206206 con .execute_command ('AI.TENSORSET' , key_name , 'INT32' , 2 , 1 , 'VALUES' , 1 , 2 )
207207 # Redis should save the stored tensor by calling the AOF rewrite callback and then reload from AOF.
208- env .restartAndReload (timeout_sec = 120 )
208+ env .restartAndReload (timeout_sec = 300 )
209209 _ , tensor_type , _ , tensor_shape = con .execute_command ('AI.TENSORGET' , key_name , 'META' )
210210 env .assertEqual ([tensor_type , tensor_shape ], [b"INT32" , [2 , 1 ]])
211211 values = con .execute_command ('AI.TENSORGET' , key_name , 'VALUES' )
0 commit comments