@@ -899,7 +899,6 @@ def to_numpy(self, dtype=None, copy=False):
899899 ``to_numpy()`` will return a NumPy array and the categorical dtype
900900 will be lost.
901901
902-
903902 For NumPy dtypes, this will be a reference to the actual data stored
904903 in this Series or Index (assuming ``copy=False``). Modifying the result
905904 in place will modify the data stored in the Series or Index (not that
@@ -910,7 +909,7 @@ def to_numpy(self, dtype=None, copy=False):
910909 expensive. When you need a no-copy reference to the underlying data,
911910 :attr:`Series.array` should be used instead.
912911
913- This table lays out the different dtypes and return types of
912+ This table lays out the different dtypes and default return types of
914913 ``to_numpy()`` for various dtypes within pandas.
915914
916915 ================== ================================
@@ -920,6 +919,7 @@ def to_numpy(self, dtype=None, copy=False):
920919 period ndarray[object] (Periods)
921920 interval ndarray[object] (Intervals)
922921 IntegerNA ndarray[object]
922+ datetime64[ns] datetime64[ns]
923923 datetime64[ns, tz] ndarray[object] (Timestamps)
924924 ================== ================================
925925
0 commit comments