Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion docs/api/paddle/vision/Overview_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,13 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
" :ref:`resnet50 <cn_api_paddle_vision_models_resnet50>` ", "50层的ResNet模型"
" :ref:`resnet101 <cn_api_paddle_vision_models_resnet101>` ", "101层的ResNet模型"
" :ref:`resnet152 <cn_api_paddle_vision_models_resnet152>` ", "152层的ResNet模型"
" :ref:`ResNeXt <cn_api_paddle_vision_models_ResNeXt>` ", "ResNeXt模型"
" :ref:`resnext50_32x4d <cn_api_paddle_vision_models_resnext50_32x4d>` ", "ResNeXt-50 32x4d模型"
" :ref:`resnext50_64x4d <cn_api_paddle_vision_models_resnext50_64x4d>` ", "ResNeXt-50 64x4d模型"
" :ref:`resnext101_32x4d <cn_api_paddle_vision_models_resnext101_32x4d>` ", "ResNeXt-101 32x4d模型"
" :ref:`resnext101_64x4d <cn_api_paddle_vision_models_resnext101_64x4d>` ", "ResNeXt-101 64x4d模型"
" :ref:`resnext152_32x4d <cn_api_paddle_vision_models_resnext152_32x4d>` ", "ResNeXt-152 32x4d模型"
" :ref:`resnext152_64x4d <cn_api_paddle_vision_models_resnext152_64x4d>` ", "ResNeXt-152 64x4d模型"
" :ref:`VGG <cn_api_paddle_vision_models_VGG>` ", "VGG模型"
" :ref:`vgg11 <cn_api_paddle_vision_models_vgg11>` ", "11层的VGG模型"
" :ref:`vgg13 <cn_api_paddle_vision_models_vgg13>` ", "13层的VGG模型"
Expand All @@ -57,7 +64,6 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
" :ref:`InceptionV3 <cn_api_paddle_vision_models_InceptionV3>` ", "InceptionV3模型"
" :ref:`inception_v3 <cn_api_paddle_vision_models_inception_v3>` ", "InceptionV3模型"


.. _about_ops:

视觉操作相关API
Expand Down
33 changes: 33 additions & 0 deletions docs/api/paddle/vision/models/ResNeXt_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
.. _cn_api_paddle_vision_models_ResNeXt:

ResNeXt
-------------------------------

.. py:class:: paddle.vision.models.ResNeXt(layers=50, cardinality=32, num_classes=1000, with_pool=True)

ResNeXt模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **layers** (int,可选) - ResNeXt 模型的深度。默认值:50
- **cardinality** (int,可选) - 模型基数,也即划分组的数量。默认值:32
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
- **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。

返回
:::::::::
ResNeXt模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import ResNeXt

resnext50_32x4d = ResNeXt(depth=50, cardinality=32)

x = paddle.rand([1, 3, 224, 224])
out = resnext50_32x4d(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext101_32x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext101_32x4d:

resnext101_32x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext101_32x4d(pretrained=False, **kwargs)

ResNeXt-101 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext101_32x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext101_32x4d

# build model
model = resnext101_32x4d()

# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext101_64x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext101_64x4d:

resnext101_64x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext101_64x4d(pretrained=False, **kwargs)

ResNeXt-101 64x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext101_64x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext101_64x4d

# build model
model = resnext101_64x4d()

# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext152_32x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext152_32x4d:

resnext152_32x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext152_32x4d(pretrained=False, **kwargs)

ResNeXt-152 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext152_32x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext152_32x4d

# build model
model = resnext152_32x4d()

# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext152_64x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext152_64x4d:

resnext152_64x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext152_64x4d(pretrained=False, **kwargs)

ResNeXt-152 64x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext152_64x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext152_64x4d

# build model
model = resnext152_64x4d()

# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext50_32x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext50_32x4d:

resnext50_32x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext50_32x4d(pretrained=False, **kwargs)

ResNeXt-50 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext50_32x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext50_32x4d

# build model
model = resnext50_32x4d()

# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/resnext50_64x4d_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_resnext50_64x4d:

resnext50_64x4d
-------------------------------

.. py:function:: paddle.vision.models.resnext50_64x4d(pretrained=False, **kwargs)

ResNeXt-50 64x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
resnext50_64x4d模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext50_64x4d

# build model
model = resnext50_64x4d()

# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)