Skip to content

Commit 7658c4c

Browse files
yang131313yang131313TCChenlong
authored
update practices (#4675)
* update practices * Update collaborative_filtering.ipynb * Update collaborative_filtering.ipynb * Update save_model.ipynb * Update linear_regression.ipynb * Update image_classification.ipynb * Update convnet_image_classification.ipynb * Update image_ocr.ipynb * Update super_resolution_sub_pixel.ipynb * Update landmark_detection.ipynb * Update pointnet.ipynb * Update n_gram_model.ipynb * Update seq2seq_with_attention.ipynb * Update pretrained_word_embeddings.ipynb * Update collaborative_filtering.ipynb * Update autoencoder.ipynb * Update imdb_bow_classification.ipynb Co-authored-by: yang131313 <[email protected]> Co-authored-by: Chen Long <[email protected]>
1 parent 1027a39 commit 7658c4c

24 files changed

+2467
-1841
lines changed

docs/practices/cv/convnet_image_classification.ipynb

100644100755
Lines changed: 50 additions & 42 deletions
Large diffs are not rendered by default.

docs/practices/cv/image_classification.ipynb

100644100755
Lines changed: 51 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
"# 使用LeNet在MNIST数据集实现图像分类\n",
1010
"\n",
1111
"**作者:** [PaddlePaddle](https://github.com/PaddlePaddle) <br>\n",
12-
"**日期:** 2022.1 <br>\n",
12+
"**日期:** 2022.4 <br>\n",
1313
"**摘要:** 本示例教程演示如何在MNIST数据集上用LeNet进行图像分类。"
1414
]
1515
},
@@ -21,12 +21,12 @@
2121
"source": [
2222
"## 一、环境配置\n",
2323
"\n",
24-
"本教程基于Paddle 2.2 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) Paddle 2.2"
24+
"本教程基于PaddlePaddle 2.3.0-rc0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) PaddlePaddle 2.3.0-rc0"
2525
]
2626
},
2727
{
2828
"cell_type": "code",
29-
"execution_count": null,
29+
"execution_count": 1,
3030
"metadata": {
3131
"collapsed": false
3232
},
@@ -35,7 +35,7 @@
3535
"name": "stdout",
3636
"output_type": "stream",
3737
"text": [
38-
"2.2.2\n"
38+
"2.3.0-rc0\n"
3939
]
4040
}
4141
],
@@ -58,20 +58,11 @@
5858
},
5959
{
6060
"cell_type": "code",
61-
"execution_count": null,
61+
"execution_count": 2,
6262
"metadata": {
6363
"collapsed": false
6464
},
65-
"outputs": [
66-
{
67-
"name": "stdout",
68-
"output_type": "stream",
69-
"text": [
70-
"download training data and load training data\n",
71-
"load finished\n"
72-
]
73-
}
74-
],
65+
"outputs": [],
7566
"source": [
7667
"from paddle.vision.transforms import Compose, Normalize\n",
7768
"\n",
@@ -96,7 +87,7 @@
9687
},
9788
{
9889
"cell_type": "code",
99-
"execution_count": null,
90+
"execution_count": 3,
10091
"metadata": {
10192
"collapsed": false
10293
},
@@ -107,16 +98,6 @@
10798
"text": [
10899
"train_data0 label is: [5]\n"
109100
]
110-
},
111-
{
112-
"data": {
113-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACHBJREFUeJzt3V1oVOkZB/D/42j8ql9pZInZYBYVIRT8INYWi0atH13Q4E2JilZZWC/8aMFgTb3QCy+KQi803ixWUrGmFGvYtSwEXcyFuEgSDDbZNasuxs3i1yJq0QtdeXsxx+k8B5M5mXnmnDOZ/w9Czv+cZM4LPr7zzjmTZ8Q5B6JcjYp6ADQysJDIBAuJTLCQyAQLiUywkMgEC4lMsJDIRE6FJCJrRaRPRG6LyH6rQVHhkWyvbItIAsA3AFYBGADQAWCjc+6rwX6nrKzMVVVVZXU+ikZXV9cPzrnpmX5udA7n+DmA2865bwFARP4BoA7AoIVUVVWFzs7OHE5JYROR/iA/l8tTWwWA79LygLfPP5CPRaRTRDofP36cw+kozvK+2HbOfeKcq3HO1UyfnnGGpAKVSyF9D6AyLb/v7aMilEshdQCYIyIfiEgJgHoAn9kMiwpN1ott59yPIrILQBuABIBTzrles5FRQcnlVRucc58D+NxoLFTAeGWbTLCQyAQLiUywkMgEC4lMsJDIBAuJTLCQyAQLiUywkMgEC4lM5HSvrZi8efNG5WfPngX+3aamJpVfvnypcl9fn8onTpxQuaGhQeWWlhaVx40bp/L+/f9/+/zBgwcDjzMXnJHIBAuJTLCQyETRrJHu3bun8qtXr1S+evWqyleuXFH56dOnKp87d85sbJWVlSrv3r1b5dbWVpUnTZqk8rx581RetmyZ2diC4oxEJlhIZIKFRCZG7Brp+vXrKq9YsULl4VwHspZIJFQ+fPiwyhMnTlR58+bNKs+YMUPladOmqTx37txchzhsnJHIBAuJTLCQyMSIXSPNnDlT5bKyMpUt10iLFy9W2b9muXz5ssolJSUqb9myxWwsUeGMRCZYSGSChUQmRuwaqbS0VOWjR4+qfOHCBZUXLFig8p49e4Z8/Pnz56e2L126pI75rwP19PSofOzYsSEfuxBxRiITGQtJRE6JyCMR6UnbVyoiF0Xklvd92lCPQSNfkBmpGcBa3779AL5wzs0B8IWXqYgFao8sIlUA/u2c+5mX+wDUOufui0g5gHbnXMYbPDU1NS4uXW2fP3+usv89Pjt27FD55MmTKp85cya1vWnTJuPRxYeIdDnnajL9XLZrpPecc/e97QcA3svycWiEyHmx7ZJT2qDTGtsjF4dsC+mh95QG7/ujwX6Q7ZGLQ7bXkT4D8DsAf/a+f2o2opBMnjx5yONTpkwZ8nj6mqm+vl4dGzWq+K6qBHn53wLgSwBzRWRARD5CsoBWicgtAL/2MhWxjDOSc27jIIdWGo+FCljxzcGUFyP2XluuDh06pHJXV5fK7e3tqW3/vbbVq1fna1ixxRmJTLCQyAQLiUxk/VGk2YjTvbbhunPnjsoLFy5MbU+dOlUdW758uco1NfpW1c6dO1UWEYsh5kW+77URKSwkMsGX/wHNmjVL5ebm5tT29u3b1bHTp08PmV+8eKHy1q1bVS4vL892mJHhjEQmWEhkgoVEJrhGytKGDRtS27Nnz1bH9u7dq7L/FkpjY6PK/f39Kh84cEDlioqKrMcZFs5IZIKFRCZYSGSCt0jywN9K2f/n4du2bVPZ/2+wcqV+z+DFixftBjdMvEVCoWIhkQkWEpngGikCY8eOVfn169cqjxkzRuW2tjaVa2tr8zKud+EaiULFQiITLCQywXttBm7cuKGy/yO4Ojo6VPavifyqq6tVXrp0aQ6jCwdnJDLBQiITLCQywTVSQP6PVD9+/Hhq+/z58+rYgwcPhvXYo0frfwb/e7YLoU1O/EdIBSFIf6RKEbksIl+JSK+I/N7bzxbJlBJkRvoRwF7nXDWAXwDYKSLVYItkShOk0dZ9APe97f+KyNcAKgDUAaj1fuxvANoB/DEvowyBf11z9uxZlZuamlS+e/du1udatGiRyv73aK9fvz7rx47KsNZIXr/tBQCugS2SKU3gQhKRnwD4F4A/OOdUt/OhWiSzPXJxCFRIIjIGySL6u3Pu7WvdQC2S2R65OGRcI0my58pfAXztnPtL2qGCapH88OFDlXt7e1XetWuXyjdv3sz6XP6PJt23b5/KdXV1KhfCdaJMglyQXAJgC4D/iEi3t+9PSBbQP712yf0AfpufIVIhCPKq7QqAwTpBsUUyAeCVbTIyYu61PXnyRGX/x2R1d3er7G/lN1xLlixJbfv/1n/NmjUqjx8/PqdzFQLOSGSChUQmWEhkoqDWSNeuXUttHzlyRB3zvy96YGAgp3NNmDBBZf/Ht6ffH/N/PHsx4oxEJlhIZKKgntpaW1vfuR2E/0981q1bp3IikVC5oaFBZX93f9I4I5EJFhKZYCGRCba1oSGxrQ2FioVEJlhIZIKFRCZYSGSChUQmWEhkgoVEJlhIZIKFRCZYSGQi1HttIvIYyb/KLQPwQ2gnHp64ji2qcc10zmVs2hBqIaVOKtIZ5EZgFOI6triO6y0+tZEJFhKZiKqQPonovEHEdWxxHReAiNZINPLwqY1MhFpIIrJWRPpE5LaIRNpOWUROicgjEelJ2xeL3uGF2Ns8tEISkQSAEwB+A6AawEavX3dUmgGs9e2LS+/wwutt7pwL5QvALwG0peVGAI1hnX+QMVUB6EnLfQDKve1yAH1Rji9tXJ8CWBXX8TnnQn1qqwDwXVoe8PbFSex6hxdKb3Mutgfhkv/tI31Jm21v8yiEWUjfA6hMy+97++IkUO/wMOTS2zwKYRZSB4A5IvKBiJQAqEeyV3ecvO0dDkTYOzxAb3Mgbr3NQ140fgjgGwB3AByIeAHbguSH9bxGcr32EYCfIvlq6BaASwBKIxrbr5B82roBoNv7+jAu43vXF69skwkutskEC4lMsJDIBAuJTLCQyAQLiUywkMgEC4lM/A+jN2A4bkW+2gAAAABJRU5ErkJggg==\n",
114-
"text/plain": [
115-
"<Figure size 144x144 with 1 Axes>"
116-
]
117-
},
118-
"metadata": {},
119-
"output_type": "display_data"
120101
}
121102
],
122103
"source": [
@@ -141,7 +122,7 @@
141122
},
142123
{
143124
"cell_type": "code",
144-
"execution_count": null,
125+
"execution_count": 4,
145126
"metadata": {
146127
"collapsed": false
147128
},
@@ -197,11 +178,20 @@
197178
},
198179
{
199180
"cell_type": "code",
200-
"execution_count": null,
181+
"execution_count": 5,
201182
"metadata": {
202183
"collapsed": false
203184
},
204-
"outputs": [],
185+
"outputs": [
186+
{
187+
"name": "stderr",
188+
"output_type": "stream",
189+
"text": [
190+
"W0422 18:56:10.020583 19533 gpu_context.cc:244] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1\n",
191+
"W0422 18:56:10.026566 19533 gpu_context.cc:272] device: 0, cuDNN Version: 7.6.\n"
192+
]
193+
}
194+
],
205195
"source": [
206196
"from paddle.metric import Accuracy\n",
207197
"model = paddle.Model(LeNet()) # 用Model封装模型\n",
@@ -217,7 +207,7 @@
217207
},
218208
{
219209
"cell_type": "code",
220-
"execution_count": 12,
210+
"execution_count": 6,
221211
"metadata": {
222212
"collapsed": false
223213
},
@@ -228,9 +218,16 @@
228218
"text": [
229219
"The loss value printed in the log is the current step, and the metric is the average value of previous steps.\n",
230220
"Epoch 1/2\n",
231-
"step 938/938 [==============================] - loss: 0.0132 - acc: 0.9585 - 10ms/step \n",
221+
"step 20/938 [..............................] - loss: 1.4646 - acc: 0.3828 - ETA: 17s - 19ms/ste"
222+
]
223+
},
224+
{
225+
"name": "stdout",
226+
"output_type": "stream",
227+
"text": [
228+
"step 30/938 [..............................] - loss: 1.1068 - acc: 0.4672 - ETA: 14s - 16ms/stepstep 938/938 [==============================] - loss: 0.1653 - acc: 0.9273 - 11ms/step \n",
232229
"Epoch 2/2\n",
233-
"step 938/938 [==============================] - loss: 0.0075 - acc: 0.9850 - 10ms/step \n"
230+
"step 938/938 [==============================] - loss: 0.0199 - acc: 0.9767 - 11ms/step \n"
234231
]
235232
}
236233
],
@@ -254,7 +251,7 @@
254251
},
255252
{
256253
"cell_type": "code",
257-
"execution_count": 13,
254+
"execution_count": 7,
258255
"metadata": {
259256
"collapsed": false
260257
},
@@ -264,17 +261,17 @@
264261
"output_type": "stream",
265262
"text": [
266263
"Eval begin...\n",
267-
"step 157/157 [==============================] - loss: 1.6993e-04 - acc: 0.9865 - 8ms/step \n",
264+
"step 157/157 [==============================] - loss: 0.0048 - acc: 0.9780 - 8ms/step \n",
268265
"Eval samples: 10000\n"
269266
]
270267
},
271268
{
272269
"data": {
273270
"text/plain": [
274-
"{'loss': [0.0001699343], 'acc': 0.9865}"
271+
"{'loss': [0.0047780997], 'acc': 0.978}"
275272
]
276273
},
277-
"execution_count": 13,
274+
"execution_count": 7,
278275
"metadata": {},
279276
"output_type": "execute_result"
280277
}
@@ -306,7 +303,7 @@
306303
},
307304
{
308305
"cell_type": "code",
309-
"execution_count": null,
306+
"execution_count": 8,
310307
"metadata": {
311308
"collapsed": false
312309
},
@@ -315,10 +312,14 @@
315312
"name": "stdout",
316313
"output_type": "stream",
317314
"text": [
318-
"epoch: 0, batch_id: 0, loss is: [2.8395634], acc is: [0.0625]\n",
319-
"epoch: 0, batch_id: 300, loss is: [0.2528286], acc is: [0.890625]\n",
320-
"epoch: 0, batch_id: 600, loss is: [0.02093708], acc is: [1.]\n",
321-
"epoch: 0, batch_id: 900, loss is: [0.06315502], acc is: [0.984375]\n"
315+
"epoch: 0, batch_id: 0, loss is: [3.7514806], acc is: [0.21875]\n",
316+
"epoch: 0, batch_id: 300, loss is: [0.19029362], acc is: [0.953125]\n",
317+
"epoch: 0, batch_id: 600, loss is: [0.12201739], acc is: [0.953125]\n",
318+
"epoch: 0, batch_id: 900, loss is: [0.03218058], acc is: [0.984375]\n",
319+
"epoch: 1, batch_id: 0, loss is: [0.114471], acc is: [0.953125]\n",
320+
"epoch: 1, batch_id: 300, loss is: [0.00857661], acc is: [1.]\n",
321+
"epoch: 1, batch_id: 600, loss is: [0.10740176], acc is: [0.96875]\n",
322+
"epoch: 1, batch_id: 900, loss is: [0.19590104], acc is: [0.9375]\n"
322323
]
323324
}
324325
],
@@ -360,7 +361,7 @@
360361
},
361362
{
362363
"cell_type": "code",
363-
"execution_count": null,
364+
"execution_count": 9,
364365
"metadata": {
365366
"collapsed": false
366367
},
@@ -369,14 +370,14 @@
369370
"name": "stdout",
370371
"output_type": "stream",
371372
"text": [
372-
"batch_id: 0, loss is: [0.01972857], acc is: [0.984375]\n",
373-
"batch_id: 20, loss is: [0.19958115], acc is: [0.9375]\n",
374-
"batch_id: 40, loss is: [0.23575728], acc is: [0.953125]\n",
375-
"batch_id: 60, loss is: [0.07018849], acc is: [0.984375]\n",
376-
"batch_id: 80, loss is: [0.02309197], acc is: [0.984375]\n",
377-
"batch_id: 100, loss is: [0.00239462], acc is: [1.]\n",
378-
"batch_id: 120, loss is: [0.01583934], acc is: [1.]\n",
379-
"batch_id: 140, loss is: [0.00399609], acc is: [1.]\n"
373+
"batch_id: 0, loss is: [0.04440754], acc is: [0.984375]\n",
374+
"batch_id: 20, loss is: [0.19196557], acc is: [0.9375]\n",
375+
"batch_id: 40, loss is: [0.09817676], acc is: [0.984375]\n",
376+
"batch_id: 60, loss is: [0.16782945], acc is: [0.953125]\n",
377+
"batch_id: 80, loss is: [0.05786889], acc is: [0.96875]\n",
378+
"batch_id: 100, loss is: [0.00799548], acc is: [1.]\n",
379+
"batch_id: 120, loss is: [0.00511317], acc is: [1.]\n",
380+
"batch_id: 140, loss is: [0.01672031], acc is: [1.]\n"
380381
]
381382
}
382383
],

0 commit comments

Comments
 (0)