Skip to content

Commit 6b5e24f

Browse files
authored
[PaddlePaddle Hackathon] add WideResNet zh-cn docs (#4034)
* add wide resnet * update ResNet doc * update Overview * trigger CI
1 parent d2d18e8 commit 6b5e24f

File tree

4 files changed

+75
-2
lines changed

4 files changed

+75
-2
lines changed

docs/api/paddle/vision/Overview_cn.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,8 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
4949
" :ref:`resnet50 <cn_api_paddle_vision_models_resnet50>` ", "50层的ResNet模型"
5050
" :ref:`resnet101 <cn_api_paddle_vision_models_resnet101>` ", "101层的ResNet模型"
5151
" :ref:`resnet152 <cn_api_paddle_vision_models_resnet152>` ", "152层的ResNet模型"
52+
" :ref:`wide_resnet50_2 <_cn_api_paddle_vision_models_wide_resnet50_2>` ", "50层的WideResNet模型"
53+
" :ref:`wide_resnet101_2 <_cn_api_paddle_vision_models_wide_resnet101_2>` ", "101层的WideResNet模型"
5254
" :ref:`ResNeXt <cn_api_paddle_vision_models_ResNeXt>` ", "ResNeXt模型"
5355
" :ref:`resnext50_32x4d <cn_api_paddle_vision_models_resnext50_32x4d>` ", "ResNeXt-50 32x4d模型"
5456
" :ref:`resnext50_64x4d <cn_api_paddle_vision_models_resnext50_64x4d>` ", "ResNeXt-50 64x4d模型"

docs/api/paddle/vision/models/ResNet_cn.rst

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,15 @@
33
ResNet
44
-------------------------------
55

6-
.. py:class:: paddle.vision.models.ResNet(Block, depth=50, num_classes=1000, with_pool=True)
6+
.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True)
77
88
ResNet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
99

1010
参数
1111
:::::::::
1212
- **Block** (BasicBlock|BottleneckBlock) - 模型的残差模块。
13-
- **depth** (int,可选) - resnet模型的深度。默认值:50
13+
- **depth** (int,可选) - resnet模型的深度。默认值:50。
14+
- **width** (int,可选) - resnet模型的基础宽度。默认值:64。
1415
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
1516
- **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。
1617

@@ -28,6 +29,8 @@ ResNet模型,Layer的实例。
2829
2930
resnet50 = ResNet(BottleneckBlock, 50)
3031
32+
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
33+
3134
resnet18 = ResNet(BasicBlock, 18)
3235
3336
x = paddle.rand([1, 3, 224, 224])
Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
.. _cn_api_paddle_vision_models_wide_resnet101_2:
2+
3+
wide_resnet101_2
4+
-------------------------------
5+
6+
.. py:function:: paddle.vision.models.wide_resnet101_2(pretrained=False, **kwargs)
7+
8+
101层的wide_resnet模型,来自论文 `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ 。
9+
10+
参数
11+
:::::::::
12+
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
返回
15+
:::::::::
16+
wide_resnet101_2模型,Layer的实例。
17+
18+
代码示例
19+
:::::::::
20+
.. code-block:: python
21+
22+
import paddle
23+
from paddle.vision.models import wide_resnet101_2
24+
25+
# build model
26+
model = wide_resnet101_2()
27+
28+
# build model and load imagenet pretrained weight
29+
# model = wide_resnet101_2(pretrained=True)
30+
31+
x = paddle.rand([1, 3, 224, 224])
32+
out = model(x)
33+
34+
print(out.shape)
Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
.. _cn_api_paddle_vision_models_wide_resnet50_2:
2+
3+
wide_resnet50_2
4+
-------------------------------
5+
6+
.. py:function:: paddle.vision.models.wide_resnet50_2(pretrained=False, **kwargs)
7+
8+
50层的wide_resnet模型,来自论文 `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ 。
9+
10+
参数
11+
:::::::::
12+
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
返回
15+
:::::::::
16+
wide_resnet50_2模型,Layer的实例。
17+
18+
代码示例
19+
:::::::::
20+
.. code-block:: python
21+
22+
import paddle
23+
from paddle.vision.models import wide_resnet50_2
24+
25+
# build model
26+
model = wide_resnet50_2()
27+
28+
# build model and load imagenet pretrained weight
29+
# model = wide_resnet50_2(pretrained=True)
30+
31+
x = paddle.rand([1, 3, 224, 224])
32+
out = model(x)
33+
34+
print(out.shape)

0 commit comments

Comments
 (0)