|
1 | | -.. _cn_api_tensor_norm: |
| 1 | +.. _cn_api_linalg_norm: |
2 | 2 |
|
3 | 3 | norm |
4 | 4 | ------------------------------- |
5 | 5 |
|
6 | | -.. py:function:: paddle.norm(x, p='fro', axis=None, keepdim=False, name=None): |
| 6 | +.. py:function:: paddle.linalg.norm(x, p='fro', axis=None, keepdim=False, name=None): |
7 | 7 |
|
8 | 8 |
|
9 | 9 |
|
|
12 | 12 |
|
13 | 13 | .. note:: |
14 | 14 |
|
15 | | - 此API与`numpy.linalg.norm`存在差异。此API支持高阶张量(rank>=3)作为输入,输入`axis`对应的轴就可以计算出norm的值。但是`numpy.linalg.norm`仅支持一维向量和二维矩阵作为输入。特别需要注意的是,此API的P阶矩阵范数,实际上将矩阵摊平成向量计算。实际计算的是向量范数,而不是真正的矩阵范数。 |
| 15 | + 此API与 ``numpy.linalg.norm`` 存在差异。此API支持高阶张量(rank>=3)作为输入,输入 ``axis`` 对应的轴就可以计算出norm的值。但是 ``numpy.linalg.norm`` 仅支持一维向量和二维矩阵作为输入。特别需要注意的是,此API的P阶矩阵范数,实际上将矩阵摊平成向量计算。实际计算的是向量范数,而不是真正的矩阵范数。 |
16 | 16 |
|
17 | 17 | 参数 |
18 | 18 | ::::::::: |
|
43 | 43 | # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]] |
44 | 44 |
|
45 | 45 | # compute frobenius norm along last two dimensions. |
46 | | - out_fro = paddle.norm(x, p='fro', axis=[0,1]) |
| 46 | + out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1]) |
47 | 47 | # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535] |
48 | 48 |
|
49 | 49 | # compute 2-order vector norm along last dimension. |
50 | | - out_pnorm = paddle.norm(x, p=2, axis=-1) |
| 50 | + out_pnorm = paddle.linalg.norm(x, p=2, axis=-1) |
51 | 51 | #out_pnorm.numpy(): [[21.118711 13.190906 5.477226] |
52 | 52 | # [ 3.7416575 11.224972 19.131126]] |
53 | 53 |
|
54 | 54 | # compute 2-order norm along [0,1] dimension. |
55 | | - out_pnorm = paddle.norm(x, p=2, axis=[0,1]) |
| 55 | + out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1]) |
56 | 56 | #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535] |
57 | 57 |
|
58 | 58 | # compute inf-order norm |
59 | | - out_pnorm = paddle.norm(x, p=np.inf) |
| 59 | + out_pnorm = paddle.linalg.norm(x, p=np.inf) |
60 | 60 | #out_pnorm.numpy() = [12.] |
61 | | - out_pnorm = paddle.norm(x, p=np.inf, axis=0) |
| 61 | + out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0) |
62 | 62 | #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]] |
63 | 63 |
|
64 | 64 | # compute -inf-order norm |
65 | | - out_pnorm = paddle.norm(x, p=-np.inf) |
| 65 | + out_pnorm = paddle.linalg.norm(x, p=-np.inf) |
66 | 66 | #out_pnorm.numpy(): [0.] |
67 | | - out_pnorm = paddle.norm(x, p=-np.inf, axis=0) |
| 67 | + out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0) |
68 | 68 | #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]] |
69 | 69 | |
0 commit comments