From 9df4483fa91debb0d50953240c46636830ea0dd6 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 15:55:17 +0530 Subject: [PATCH 01/10] Add name to Readme.md --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 3a87181..da926cc 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # Practice with git and GitHub -\[Your Step 3 Edit Here\] +I am Jayanth Saish and i edited this file! This is a very simple repository for practicing with git and GitHub. git is a utility for *version control*. When a body of code is tracked with git, it is easy to see how the software has evolved over time, to roll back changes when needed, and to incorporate modifications by multiple collaborators. In this activity, we're going to focus on core git workflows for single-person projects. We may do a follow-up activity later in the quarter on workflows for collaborative projects. @@ -110,3 +110,5 @@ An important principle of version control is that you **never** duplicate files. Great job! If you comfortably navigated these exercises, then you have the necessary basics for working with git and GitHub. These will get you most of the way through the course, and indeed, through your programming career. The most important topics that we haven't yet discussed are *merging* and *branching*, which are especially relevant when collaborating with others. We may come back to these in a future Discussion activity. Another topic that you might find useful to explore on your own is the `.gitignore` file. This file specifies files which should be *excluded* from tracking by git. This is handy if there are certain "junk" files that you would prefer not to see in GitHub Desktop. + + From 79231923061c879686f3b3b2e7e53d07d2ca7c0c Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 16:06:18 +0530 Subject: [PATCH 02/10] prac-1 --- practice - folder/Git Practice.ipynb | 59 ++++++++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 practice - folder/Git Practice.ipynb diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb new file mode 100644 index 0000000..650f297 --- /dev/null +++ b/practice - folder/Git Practice.ipynb @@ -0,0 +1,59 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "415b8726", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZdElEQVR4nO3deVzUdeIG8GdmGIZDGOQGQcALURAVFMFMTcMjLbvUUrRWLbcszdota9vMrVx/u7V2aVmaZaZWZmmpieUNXgje4gWCyCEIM4DCwMz39wc4SQiCMnzmeN6v17xe6/id4ZnZah4+8zlkkiRJICIiIrIictEBiIiIiFoaCw4RERFZHRYcIiIisjosOERERGR1WHCIiIjI6rDgEBERkdVhwSEiIiKrw4JDREREVsdOdAARDAYDLl26BBcXF8hkMtFxiIiIqAkkSUJpaSn8/f0hlzc+RmOTBefSpUsIDAwUHYOIiIhuQ3Z2NgICAhq9xiYLjouLC4CaN8jV1VVwGiIiImoKrVaLwMBA4+d4Y2yy4Fz/WsrV1ZUFh4iIyMI0ZXoJJxkTERGR1WHBISIiIqvDgkNERERWhwWHiIiIrA4LDhEREVkdFhwiIiKyOiw4REREZHVYcIiIiMjqsOAQERGR1TFpwdm5cydGjx4Nf39/yGQy/Pjjj7d8zI4dOxAVFQUHBwd06NABn3zySb1r1q5di27dukGlUqFbt25Yt26dCdITERGRpTJpwSkvL0dkZCQ++uijJl2fkZGBkSNHYsCAAUhNTcWrr76K559/HmvXrjVek5ycjHHjxiEhIQGHDx9GQkICxo4di3379pnqZRAREZGFkUmSJLXKD5LJsG7dOowZM6bBa15++WWsX78eJ0+eNN43ffp0HD58GMnJyQCAcePGQavVYtOmTcZrhg8fjrZt22LVqlVNyqLVaqFWq6HRaHgWFRERkYVozue3WR22mZycjPj4+Dr3DRs2DEuXLkVVVRWUSiWSk5Pxwgsv1Ltm4cKFDT5vZWUlKisrjX/WarUtmpssk8EgIbv4KjIKy5GvrUCBthLXqvTQGyRIAFxUdnBztodXGxU6eTsjyMMZSgWnrRERWQKzKjh5eXnw8fGpc5+Pjw+qq6tRWFgIPz+/Bq/Jy8tr8Hnnz5+PN9980ySZyXJU6w04fLEEO04XYu/5Ipy8pEVpZXWTH28nl6GLjwv6dfBAvw7u6N/JE84qs/pXiIiIapndf53/fAT69W/Qbrz/Ztc0dnT6nDlzMHv2bOOftVotAgMDWyIumTlJknAoqxhrD+Vg49FclFytqvP39nZydPB0hq/aAd4uKjir7GAnr/lnSXutGsVXdcjXVuBsQRnKdXqcyNXiRK4Wy/ZkQGUnxz1dvTGqhz/u7eYDezuO7hARmQuzKji+vr71RmIKCgpgZ2cHDw+PRq/586jOjVQqFVQqVcsHJrNVUaXHD4dy8Pnu8zh/udx4v9pRibs6e+Luzp6IDHRDR682TfraSZIkXNJU4NCFYuw9X4RdZwqRdeUqNh3Lw6ZjefBso8LjMe0xIaY9fFwdTPnSiIioCcyq4MTGxmLDhg117tuyZQuio6OhVCqN1yQmJtaZh7NlyxbExcW1alYyTxVVeixPysRnO8+jqFwHAHCyV2B4uC8e7h2Afh08oJA3PNrXEJlMhnZujmjn5ojRkf6QJAnHL2nx85FcrEu9iHxtJT747Qw+2X4Oj8e0xzODOsKbRYeISBiTFpyysjKcPXvW+OeMjAykpaXB3d0d7du3x5w5c5CTk4OvvvoKQM2KqY8++gizZ8/GtGnTkJycjKVLl9ZZHTVz5kzcfffdWLBgAR544AH89NNP2Lp1K3bv3m3Kl0JmTm+QsDblIt5LPI08bQUAoJ2bI/5yVwjG9QlEmxaeKyOTyRDeTo3wdmq8GN8Fvx7Pwxd7MpFyoRjLkzKx+kAW/tI/BDPu6QQne7P6PYKIyCaYdJn49u3bMXjw4Hr3T548GcuXL8cTTzyBzMxMbN++3fh3O3bswAsvvIDjx4/D398fL7/8MqZPn17n8d9//z3+8Y9/4Pz58+jYsSPefvttPPTQQ03OxWXi1uX4JQ1e/eEoDl/UAKgpNrPv7YIHevrDrhVXPUmShKRzRXh3SzoOZZUAAPzUDvjHfd0wMsK30XliRER0a835/G61fXDMCQuOdaio0uO9xNNYujsDeoMEFwc7zBzSGRP7BcFBqRCWS5IkJJ7Ix7yfT+Bi8TUAwNAwH7zzUDi8Xfi1FRHR7WLBuQUWHMuXnleKmatTcSqvFAAwqocf/jmqm1nNe6mo0mPx9nNYvP0cdHoD2jop8daYCNzXw090NCIii8SCcwssOJZLkiSs2HsBb/9yEpXVBni2sceCh3tgSFjDq+hEO5Wnxew1h3Eit2aDyYn92uP1Ud2gshM3ykREZIlYcG6BBccyVVTp8fLaI/gp7RIAYFCoF/7zSCS8XMx/CwBdtQEf/HYGH28/C0kCIgPU+HhCbwS0dRIdjYjIYjTn85s7k5FFuFRyDY9+koyf0i7BTi7D66O64Ysn+lhEuQFqNhR8aVgolj3RB25OShy+qMGoD3dj7/ki0dGIiKwSCw6ZvbTsEtz/0R4czdGgrZMSK6bEYMpdIRa5KmlwqDc2zLgLEe3UKLlahUlL9+OntBzRsYiIrA4LDpm17ekFeGzJXhSWVaKrrwvWz7gLsR09RMe6I4HuTvhueixGhPtCpzdg5uo0fPT7Gdjgt8VERCbDgkNm68fUHEz98iCuVekxoLMn1v41DoHu1jFnxUGpwMeP98ZTd3cAAPx3y2n886fjMBhYcoiIWgILDpmlL5MyMWtNGqoNEu6P9MfSyX2s7uRuuVyGV0eGYd4D3SGTASv2XsArPxyBniWHiOiOseCQ2Vm+JwNvrD8OAHiyfzAWjutp1Sd1T4oNxntjIyGXAd8evIgX1qShSm8QHYuIyKJZ16/EZPG+TMrE3A0nAADTB3bEy8NDLXIycXM92CsAKjsFnl+VivWHL0EvSfhgfK/bOhiUiIg4gkNmZMXeC8aRm6cHdrCZcnPdyAg/fJoQBaVChl+O5GLOD0c4J4eI6Dax4JBZ2HD4Ev750zEANeXmleFdbarcXDckzAcfPtbL+HXVvJ9PcHUVEdFtYMEh4XafKcTsb9MgSUBCvyCbLTfXDQ/3w38eiQQALE/KxP+2nhGciIjI8rDgkFDHcjR4esVBVOkl3Bfhh7n3d7fpcnPdw1EB+NcD3QEAH/x2Bt8eyBaciIjIsrDgkDBZRVfxxBf7Ua7TI66jB94bF8lJtTdIiA3G8/d0AgDMWXcUO09fFpyIiMhysOCQEKUVVZjy5QEUlunQzc8VnyZE8XTtm3jh3i54sFc76A0Snll5CKfytKIjERFZBBYcanV6g4TnV6XiTEEZfF0d8MWTfeDioBQdyyzJZDL8++EIxIS4o6yyGk9+cQD52grRsYiIzB4LDrW6+RtPYlv6ZTgo5fhsUjR8XB1ERzJrKjsFliREo6OXM3I1Ffjr1ymorNaLjkVEZNZYcKhVfXsgG5/vzgAA/PfRSEQEqAUnsgxqJyWWPdEHrg52OJRVgjdrN0MkIqKbY8GhVnM4uwT/+LFmr5uZQzpjVA9/wYksS5CHMz54rBdkMuCbfVlYtT9LdCQiIrPFgkOtorhch2dWHoJOb0B8Nx/MHNJZdCSLNCjUGy/FhwIA3vjpOA5lFQtORERknlhwyOQMBgmzv01DTsk1BHk44b9jIyHncvDb9sygjhje3Rc6vQF//ToFRWWVoiMREZkdFhwyucU7zmFb+mWo7ORYNKE3XLli6o7IZDL8d2wkOno5I19biRe/O8wzq4iI/oQFh0wq6Vwh3t2SDgD41wPh6O7PScUtoY3KDh9P6A2VnRzb0y/js13nRUciIjIrLDhkMsXlOrywJg0GCXg0KgBj+wSKjmRVuvq64o3RNcc5/OfXdM7HISK6AQsOmYQkSXjlhyPI11aig5cz5j0QLjqSVXqsbyBG9fBDtUHCc9+kQnO1SnQkIiKzwIJDJrHmQDZ+PZ4PpUKGD8b3gqM9j2EwBZlMhvkPRaC9uxNySq7h1R+PQpI4H4eIiAWHWtz5y2XGjej+NiwU4e0478aUXByU+OjxXrCTy/DLkVysP3xJdCQiIuFYcKhF6aoNmLk6Ddeqak4In3pXB9GRbEKPADc8d0/N3kKv/3gMuZprghMREYnFgkMt6v3fTuNojgZuTkq8N7Yn97tpRc8M7ojIADW0FdX4+/dH+FUVEdk0FhxqMUculuCTHTXLlec/GAFfNQ/RbE1KhRzvjesJlZ0cu84U4uu9F0RHIiISplUKzqJFixASEgIHBwdERUVh165dDV77xBNPQCaT1bt1797deM3y5ctvek1FRUVrvBy6icpqPf723RHoDRLuj/THiAg/0ZFsUkevNpgzoisA4O2NJ3H+cpngREREYpi84KxZswazZs3Ca6+9htTUVAwYMAAjRoxAVtbNDwp8//33kZuba7xlZ2fD3d0djz76aJ3rXF1d61yXm5sLBweOGIjy0e9nkZ5fCs829ph7f/dbP4BMZlJsMPp38kBFlQF/+/4IdzkmIptk8oLz3nvvYcqUKZg6dSrCwsKwcOFCBAYGYvHixTe9Xq1Ww9fX13g7ePAgiouL8eSTT9a5TiaT1bnO19fX1C+FGnAsR4NF288BqNmt2N3ZXnAi2yaXy/B/j0TC2V6BlAvFWMGvqojIBpm04Oh0OqSkpCA+Pr7O/fHx8UhKSmrScyxduhRDhw5FUFBQnfvLysoQFBSEgIAAjBo1CqmpqQ0+R2VlJbRabZ0btQxdtQEvfXcYeoOE+yL8+NWUmWjn5oiXa7+q+r/Np5BTwlVVRGRbTFpwCgsLodfr4ePjU+d+Hx8f5OXl3fLxubm52LRpE6ZOnVrn/q5du2L58uVYv349Vq1aBQcHB/Tv3x9nzpy56fPMnz8farXaeAsM5JEBLWXR9rM4lVcKd2d7vPkAv5oyJxNjghAd1BblOj3+sY4bABKRbWmVScYyWd2lwpIk1bvvZpYvXw43NzeMGTOmzv39+vXDxIkTERkZiQEDBuDbb79Fly5d8OGHH970eebMmQONRmO8ZWdn3/ZroT+cu1yGRdtqvpp68/7u8GyjEpyIbiSXy/DvhyNgr5BjW/plbgBIRDbFpAXH09MTCoWi3mhNQUFBvVGdP5MkCcuWLUNCQgLs7Ruf0yGXy9GnT58GR3BUKhVcXV3r3OjOSJKE19YdhU5vwOBQL4zqwa+mzFEnbxfMuKcTAODNDSdwpVwnOBERUeswacGxt7dHVFQUEhMT69yfmJiIuLi4Rh+7Y8cOnD17FlOmTLnlz5EkCWlpafDz44dsa1mXmoO956/AQSnHvAfCmzQiR2JMH9gRoT4uuFKuw1s/nxAdh4ioVZj8K6rZs2fj888/x7Jly3Dy5Em88MILyMrKwvTp0wHUfH00adKkeo9bunQpYmJiEB5e/xTqN998E7/++ivOnz+PtLQ0TJkyBWlpacbnJNMquarD27+cBAA8P6QzAt2dBCeixtjbybHgkR6QyYAfUnOw93yR6EhERCZnZ+ofMG7cOBQVFWHevHnIzc1FeHg4Nm7caFwVlZubW29PHI1Gg7Vr1+L999+/6XOWlJTgqaeeQl5eHtRqNXr16oWdO3eib9++pn45BODfm06hqFyHLj5tMG0Az5qyBD0D3fB43/ZYuS8L//zpGH55fgCUCm5kTkTWSybZ4NIKrVYLtVoNjUbD+TjNdCDzCh79JBkA8N30WPQJdheciJqq5KoO97y7A1fKdXh1ZFc8dXdH0ZGIiJqlOZ/f/BWOmqxKb8Br644CAMZFB7LcWBg3J3u8Urs3zsKtZ3jiOBFZNRYcarIvkzJxOr8M7s5/fFCSZXmkdwCig9riqk6Pt34+KToOEZHJsOBQkxSWVeL9rTXL8P8+LBRteRyDRZLLZfjXmHAo5DL8cjQXO09fFh2JiMgkWHCoSf6zOR2lldWIaKfGo9HcCdqShfm5YnJsMABg7vrj0FUbxAYiIjIBFhy6paMXNfg2pWb357n3d4NCzj1vLN0L93aGZxsVzheW46vkTNFxiIhaHAsONUqSJMzdcBySBIzp6Y+oIE4stgYuDkr8bVgXAMD7v53hDsdEZHVYcKhRP6VdQsqFYjjZK/DKiDDRcagFPRIViG5+riitqMZ7iemi4xARtSgWHGpQeWU15m+qWWnz7OBO8FU7CE5ELUkhl+GN0d0AAN/sy8KpPK3gRERELYcFhxq0aPtZ5Gsr0d7dCVPuChEdh0wgpoMHRkb4wiAB//r5BGxw308islIsOHRTl0qu4fNdGQCA1+4Lg4NSITgRmcqcEWGwt5Njz9kibD1ZIDoOEVGLYMGhm/rvlnRUVhvQN8Qd8d18RMchEwp0d8LU2hG6t385gcpqveBERER3jgWH6jl+SYN1qTkAgNdGhkEm47Jwa/fM4E7wclEhs+gqViRfEB2HiOiOseBQPf/edAqSBIyO9EdkoJvoONQK2qjs8OK9NcvGP952FtqKKsGJiIjuDAsO1bHj9GXsOlMIpUKGvw8LFR2HWtEjUQHo6OWM4qtV+GT7OdFxiIjuCAsOGekNEuZvrFkWPik2GIHuToITUWuyU8jx8vCaQ1SX7clAnqZCcCIiotvHgkNGaw9dxKm8Urg62OG5ezqJjkMC3NvNB9FBbVFRZcDCradFxyEium0sOAQAuKbT490tNbvZzrinE9yceFq4LZLJZJgzsmYU59uD2TiTXyo4ERHR7WHBIQA1X0nkayvRzs0Rk2pPmibbFBXkjmHdfWCQgAWbeYQDEVkmFhxCyVUdPtlRM6n0b8NCuakf4W/DukIhl2HryXwcyLwiOg4RUbOx4BA+3XkepRXV6Orrgvsj/UXHITPQybsNxkYHAgDmbzzJIxyIyOKw4Ni4gtIKfLGn5kiGl+JDIZdzUz+q8cLQznBUKnAoqwSJJ/JFxyEiahYWHBu3aNs5VFQZ0DPQDUPCvEXHITPi7eqAv9wVDAB4L/E0DAaO4hCR5WDBsWEXi69i5b6abfn/PiyURzJQPU8N6AgXBzucyivFL0dzRcchImoyFhwb9v7WM6jSS+jfyQNxnTxFxyEzpHZSYtqADgCA/209jWq9QXAiIqKmYcGxUecul2HtoYsAaubeEDXkyf7BaOukxPnL5fgx7ZLoOERETcKCY6PeSzwNgwQMDfNBr/ZtRcchM+bioMT0gR0BAO//dhq6ao7iEJH5Y8GxQcdyNPjlSC5kMuDF+C6i45AFmBQbDM82KmRfuYbvUrJFxyEiuiUWHBt0/Yyh+yP9EebnKjgNWQJHewWeHVwzivPhb2dRUaUXnIiIqHEsODbm6EUNtp4sgFwGzBzSWXQcsiCP9W0PP7UD8rQV+GZflug4RESNYsGxMe//VjN6M6ZnO3TwaiM4DVkSB6UCz91TU4oXbT+Lq7pqwYmIiBrGgmNDjuX8MXoz455OouOQBXo0OgDt3Z1QWKbDyr0cxSEi89UqBWfRokUICQmBg4MDoqKisGvXrgav3b59O2QyWb3bqVOn6ly3du1adOvWDSqVCt26dcO6detM/TIs3sKtZwAAD3D0hm6TUiHHjME15fjTnedwTce5OERknkxecNasWYNZs2bhtddeQ2pqKgYMGIARI0YgK6vx3/7S09ORm5trvHXu/Md8keTkZIwbNw4JCQk4fPgwEhISMHbsWOzbt8/UL8di1Yze5HP0hu7Yg73boZ2bIwrLdPhmP0dxiMg8ySQTHxMcExOD3r17Y/Hixcb7wsLCMGbMGMyfP7/e9du3b8fgwYNRXFwMNze3mz7nuHHjoNVqsWnTJuN9w4cPR9u2bbFq1apbZtJqtVCr1dBoNHB1tY1VRNO+OojEE/kY09MfC8f3Eh2HLNw3+7Lw6rqj8HJRYdffB8NBqRAdiYhsQHM+v006gqPT6ZCSkoL4+Pg698fHxyMpKanRx/bq1Qt+fn4YMmQItm3bVufvkpOT6z3nsGHDGnzOyspKaLXaOjdbcixHg8QT+ZDJgBn3cOUU3blHogLgr3bA5dJKrDnAfXGIyPyYtOAUFhZCr9fDx8enzv0+Pj7Iy8u76WP8/PywZMkSrF27Fj/88ANCQ0MxZMgQ7Ny503hNXl5es55z/vz5UKvVxltgYOAdvjLL8v5vNXNv7o/0Rydvzr2hO2dvJ8dfa+fiLN5+DpXVnItDRObFrjV+yJ9PqZYkqcGTq0NDQxEa+sfZSLGxscjOzsZ///tf3H333bf1nHPmzMHs2bONf9ZqtTZTcm4cvXmOc2+oBY2NDsDHv59FnrYC3x28iIn9gkRHIiIyMukIjqenJxQKRb2RlYKCgnojMI3p168fzpw5Y/yzr69vs55TpVLB1dW1zs1WfFA7ejO6hz86ebsITkPWRGWnwPSBNSeNL95+jmdUEZFZMWnBsbe3R1RUFBITE+vcn5iYiLi4uCY/T2pqKvz8/Ix/jo2NrfecW7ZsadZz2oKTuVpsqR29eX4IR2+o5Y3v2x5eLirklFwznk5PRGQOTP4V1ezZs5GQkIDo6GjExsZiyZIlyMrKwvTp0wHUfH2Uk5ODr776CgCwcOFCBAcHo3v37tDpdPj666+xdu1arF271vicM2fOxN13340FCxbggQcewE8//YStW7di9+7dpn45FmXx9nMAgJHhfhy9IZNwUCrw9N0d8NYvJ/HxtrN4JCoASgX3DyUi8UxecMaNG4eioiLMmzcPubm5CA8Px8aNGxEUVPN9fW5ubp09cXQ6HV566SXk5OTA0dER3bt3xy+//IKRI0car4mLi8Pq1avxj3/8A6+//jo6duyINWvWICYmxtQvx2JkFpbj5yOXAADP1B6SSGQKE2KC8MmOc7hYfA3rDuVgbB/bmN9GRObN5PvgmCNb2AfnlbVHsPpANgaHeuGLJ/uKjkNW7tMd5zB/0ymEeDpj6+yBUMhvPuGfiOhOmM0+OCRGruaP+RDPDubcGzK9Cf2CoHZUIqOwHJuP3Xy7BiKi1sSCY4U+25mBKr2EviHuiA52Fx2HbEAblR0mxwUDqDlp3AYHhonIzLDgWJmiskqsqj0faAZHb6gVPRkXDEelAscvabHzTKHoOERk41hwrMzypExcq9Ijop0aAzp7io5DNqStsz0e69seALBo21nBaYjI1rHgWJHSiiosT8oEADw7uGODOzsTmcq0u0OgVMiwL+MKUi4Ui45DRDaMBceKfL03C6UV1ejo5Yz4br6i45AN8lM74sFe7QAAi7dzFIeIxGHBsRIVVXos3X0eAPDMoE6Qc5kuCfL0wI6QyYCtJwuQnlcqOg4R2SgWHCux5kA2Cst0CGjriPt7+ouOQzaso1cbjAivGUHkKA4RicKCYwWq9AYs2VkzevP0wI7cKp+Ee2ZQzQq+DUdykX3lquA0RGSL+EloBX45kouckmvwbGOPR6MCRMchQnjtKj69QcKnO8+JjkNENogFx8JJkoRPdtR8gDwRFwwHpUJwIqIa13fR/vbgRRSUVghOQ0S2hgXHwu06U4hTeaVwsldgYr8g0XGIjGJC3NG7vRt01QYs250pOg4R2RgWHAt3ffh/XJ9AuDnZC05D9AeZTIbpA2tOsl+57wLKKqsFJyIiW8KCY8GO5Wiw52wRFHIZptwVIjoOUT1Dw3zQwcsZpRXVWF17hAgRUWtgwbFgn9aunBrVww8BbZ0EpyGqTy6XYdqADgCAZbszUKU3CE5ERLaCBcdCZV+5io1HcwEAT93dQXAaooY92KsdPNvY45KmwvjPLBGRqbHgWKiluzOgN0gY0NkT3f3VouMQNchBqcDk2GAAwKc7zkOSJLGBiMgmsOBYoOJyHdYcyAYAPH13R8FpiG5tYr8gOCoVOJGrxZ6zRaLjEJENYMGxQCv2XsC1Kj26+bmifycP0XGIbqmtsz3GRtdsQrlk13nBaYjIFrDgWJiKKj2+TMoEADw9sANkMh6qSZZh6oAOkMuAnacv42SuVnQcIrJyLDgW5vuUiygq16GdmyPui/ATHYeoyQLdnTCi9p/Zz3ZyFIeITIsFx4LoDRI+rx3enzogBHY8VJMszFO1S8bXH76EXM01wWmIyJrxE9KCbDmeh8yiq1A7KjE2OlB0HKJmiwx0Q0yIO6oNEr7Ykyk6DhFZMRYcC3J9cmZCvyA4q+wEpyG6PU8PrBnF+WZfFrQVVYLTEJG1YsGxECkXipGaVQJ7hRyT44JFxyG6bYO6eKOTdxuUVfL4BiIyHRYcC7FsdwYA4IGe/vByUQlOQ3T75HKZcS7Ost2Z0FXz+AYianksOBYg+8pVbDpWs8X9lAE8VJMs3wO9/OHtokKetgI/H7kkOg4RWSEWHAvwZVImDBJwVydPdPV1FR2H6I6p7BSYFBsEoObYER7fQEQtjQXHzJVWVBmPZZhyF0dvyHo8HhMElZ0cxy9psT/jiug4RGRlWHDM3LcHL6K0shodvZwxsIuX6DhELcbd2R4P9a45vmFp7RwzIqKWwoJjxvQGCV/sqfkP/1/uCoFczmMZyLpMuSsYAJB4Mh8XisrFhiEiq9IqBWfRokUICQmBg4MDoqKisGvXrgav/eGHH3DvvffCy8sLrq6uiI2Nxa+//lrnmuXLl0Mmk9W7VVRUmPqltKotx/Nwsfga2jop8VCvANFxiFpcJ28XDOziBUkCN/4johZl8oKzZs0azJo1C6+99hpSU1MxYMAAjBgxAllZN9//YufOnbj33nuxceNGpKSkYPDgwRg9ejRSU1PrXOfq6orc3Nw6NwcHB1O/nFZ1fdh+QkwQHO0VgtMQmcb1uWXfHczmxn9E1GJMXnDee+89TJkyBVOnTkVYWBgWLlyIwMBALF68+KbXL1y4EH//+9/Rp08fdO7cGe+88w46d+6MDRs21LlOJpPB19e3zs2apGWX4OCFYigVMuNqEyJrNKCzJ7r4tEG5To81+7NFxyEiK2HSgqPT6ZCSkoL4+Pg698fHxyMpKalJz2EwGFBaWgp3d/c695eVlSEoKAgBAQEYNWpUvRGeG1VWVkKr1da5mbvrozejI/3h7WpdI1NEN5LJZPhL/5pRnOVJmajWc+M/IrpzJi04hYWF0Ov18PHxqXO/j48P8vLymvQc7777LsrLyzF27FjjfV27dsXy5cuxfv16rFq1Cg4ODujfvz/OnDlz0+eYP38+1Gq18RYYaN4HVeaUXMPGo7Ub+3FpONmAMb3awd3ZHjkl1/Dr8XzRcYjICrTKJGOZrO7qH0mS6t13M6tWrcLcuXOxZs0aeHt7G+/v168fJk6ciMjISAwYMADffvstunTpgg8//PCmzzNnzhxoNBrjLTvbvIfBv0rKhN4gIbaDB7r7q0XHITI5B6UCE2PaAwCW7j4vOA0RWQOTFhxPT08oFIp6ozUFBQX1RnX+bM2aNZgyZQq+/fZbDB06tNFr5XI5+vTp0+AIjkqlgqura52buSqvrMY3tQcQTuWxDGRDJsYGwV4hx6GsEqRmFYuOQ0QWzqQFx97eHlFRUUhMTKxzf2JiIuLi4hp83KpVq/DEE0/gm2++wX333XfLnyNJEtLS0uDn53fHmUX77mA2Siuq0cHTGYNDvW/9ACIr4e3igNGR/gC48R8R3Tk7U/+A2bNnIyEhAdHR0YiNjcWSJUuQlZWF6dOnA6j5+ignJwdfffUVgJpyM2nSJLz//vvo16+fcfTH0dERanXN1zVvvvkm+vXrh86dO0Or1eKDDz5AWloaPv74Y1O/HJPSGyQsq90L5Elu7Ec2aMpdIVh76CI2HctDTsk1tHNzFB2JiCyUyefgjBs3DgsXLsS8efPQs2dP7Ny5Exs3bkRQUM3S59zc3Dp74nz66aeorq7Gs88+Cz8/P+Nt5syZxmtKSkrw1FNPISwsDPHx8cjJycHOnTvRt29fU78ck9p6Mh9ZV67CzUmJh3u3Ex2HqNV183dFbAcP6A0SvkrKFB2HiCyYTLLBY3y1Wi3UajU0Go1ZzccZ+0ky9mdewTODOuLvw7uKjkMkxNYT+Zj61UG4ONhh75whcFaZfKCZiCxEcz6/eRaVmTiWo8H+zCuwk8swKTZYdBwiYe7p6o0QT2eUVlTj+5SLouMQkYViwTETX9YOx4+I8IOvmhv7ke2Sy2V4sn8wAOCLPRkwGGxukJmIWgALjhkoKqvET4cvAQCeiAsWG4bIDDzcOwCuDnbILLqK304ViI5DRBaIBccMrD6QDV21AZEBavRu7yY6DpFwzio7PNa3ZuO/5UlcMk5EzceCI1iV3oAVyRcAAE/0D27SDs9EtiAhNghyGbDnbBFO55eKjkNEFoYFR7DNx/KQp62AZxsVRkZY/kaFRC0loK0T4rv5Aqg5hJOIqDlYcAS7/h/uCTHtobJTiA1DZGaeqJ1s/MOhi9BcrRIbhogsCguOQEculiDlQjGUChkm9GsvOg6R2YkJcUeYnysqqgxYczDr1g8gIqrFgiPQ9dGbUT384e3CpeFEfyaTyfBk7crCL5MuoFpvEBuIiCwGC44gl0sr8fPhXABcGk7UmPt7+qOtkxI5Jdew9SSXjBNR07DgCPLNvizo9Ab0au+GyEA30XGIzJaDUsEl40TUbCw4AuiqDfh6X+3ScI7eEN3SxH5BUMhl2Hv+Ck7makXHISILwIIjwKZjubhcWglvFxVGhHNpONGt+Ls5Ynh4zZLxL7lknIiagAVHgC/2ZAIAEvoFwd6O/xcQNcX1ycbrUnNwpVwnNgwRmT1+uray1KxipGWXwF4hx2MxXBpO1FRRQW0R3s4VldUGrD7AJeNE1DgWnFZ2fWn46Eh/eLZRiQ1DZEFkMhmeiAsBAKxI5pJxImocC04rytdW4JcjXBpOdLtG9fCDh7M9cjUV2HIiX3QcIjJjLDitaOW+LFQbJEQHtUVEgFp0HCKL46BUYELtV7tf7OGScSJqGAtOK6ms1uOb2qXhT/YPEZyGyHJN6BcEO7kMBzKLcSxHIzoOEZkpFpxW8vPhXBSW6eCndkB8dx/RcYgslo+rA0ZG1GyvwFPGiaghLDitQJIk43+IJ/YLglLBt53oTlw/ZXx92iUUllWKDUNEZomftK3gUFYxjuZoYG8nN245T0S3r1egGyID1NDpDVi9n0vGiag+FpxWcH1jvzE9/eHubC82DJEVkMlkxrlsK/ZeQBWXjBPRn7DgmFiu5ho2HcsDAOMeHkR050ZG+MHLRYV8baXx3zEioutYcEzs670XoDdIiAlxRzd/V9FxiKyGvZ3cuGR8OZeME9GfsOCYUEWVHt/sq5kf8GTtpEgiajmPx7SHUiHDoawSHM4uER2HiMwIC44JrT98CcVXq9DOzRFDw7g0nKilebs4YFQPfwA8ZZyI6mLBMRFJkrD8+qnhsUGw49JwIpO4fuzJhiOXUFBaITYMEZkNfuqayIHMYpzI1cJBKcf4PoGi4xBZrchAN/Ru74YqvYSVe7lknIhqsOCYyPVzch7sFQA3Jy4NJzKlJ2qXjK/clwVdNZeMExELjknklFzDr8evLw0PFhuGyAaMCPeFj6sKhWWV2Hg0V3QcIjIDrVJwFi1ahJCQEDg4OCAqKgq7du1q9PodO3YgKioKDg4O6NChAz755JN616xduxbdunWDSqVCt27dsG7dOlPFb7YVyRdgkIC4jh4I9XURHYfI6ikVckyMCQIAfMHJxkSEVig4a9aswaxZs/Daa68hNTUVAwYMwIgRI5CVdfPvyjMyMjBy5EgMGDAAqampePXVV/H8889j7dq1xmuSk5Mxbtw4JCQk4PDhw0hISMDYsWOxb98+U7+cW7qm02P1gZrXxtEbotbzWEx72CvkOJxdgtSsYtFxiEgwmSRJkil/QExMDHr37o3Fixcb7wsLC8OYMWMwf/78ete//PLLWL9+PU6ePGm8b/r06Th8+DCSk5MBAOPGjYNWq8WmTZuM1wwfPhxt27bFqlWrbplJq9VCrVZDo9HA1bVlN99btT8Lc344ikB3R2x/aTAUclmLPj8RNeyl7w7j+5SLeKCnP94f30t0HCJqYc35/DbpCI5Op0NKSgri4+Pr3B8fH4+kpKSbPiY5Obne9cOGDcPBgwdRVVXV6DUNPWdlZSW0Wm2dmyncuDR8cmwwyw1RK7s+avrLkVzka7lknEiEKr0BU5YfwLrUi0LPiTNpwSksLIRer4ePT91N7nx8fJCXd/OzY/Ly8m56fXV1NQoLCxu9pqHnnD9/PtRqtfEWGGiaZdvJ54uQnl8KR6UCj0ZzaThRawtvp0af4LaoNkhYufeC6DhENmnTsTz8dqoA72w8BdN+R9S4VplkLJPVHcmQJKnefbe6/s/3N+c558yZA41GY7xlZ2c3K39TdfdX4x/3heGZQR2hdlSa5GcQUeOuH2q7cl8WKqv1gtMQ2Z7ru4pPiGkPeztxi7XtTPnknp6eUCgU9UZWCgoK6o3AXOfr63vT6+3s7ODh4dHoNQ09p0qlgkqlut2X0WRqRyWmDuhg8p9DRA2L7+4DP7UDcjUV+PlwLh6OChAdichmHL2oQcqFYigVMjxeexiuKCatVvb29oiKikJiYmKd+xMTExEXF3fTx8TGxta7fsuWLYiOjoZSqWz0moaek4hsh1Ihx8R+NUvGlydlwsTrKIjoBstrR2/ui/CDt4uD0CwmHzuaPXs2Pv/8cyxbtgwnT57ECy+8gKysLEyfPh1AzddHkyZNMl4/ffp0XLhwAbNnz8bJkyexbNkyLF26FC+99JLxmpkzZ2LLli1YsGABTp06hQULFmDr1q2YNWuWqV8OEVmAx/rWDI0fzdHgEJeME7WKwrJKbDh8CQAw2Qy2STF5wRk3bhwWLlyIefPmoWfPnti5cyc2btyIoKCa37Byc3Pr7IkTEhKCjRs3Yvv27ejZsyf+9a9/4YMPPsDDDz9svCYuLg6rV6/GF198gR49emD58uVYs2YNYmJiTP1yiMgCuDvbY0zPmlPGv6hd2UhEprV6fxZ0egMiA9To1b6t6Dim3wfHHJlyHxwiMg8nLmkx8oNdUMhl2P3yYPipHUVHIrJaVXoDBizYhjxtBf43LhIP9jLN3Dez2QeHiEiUbv6uiAlxh97AU8aJTO3X43nI01bAs409Rkb4iY4DgAWHiKzYk/2DAQDf7M9CRRWXjBOZyvVNbifEBEFlpxAbphYLDhFZraFhPmjn5ogr5Tqsr538SEQt6+hFDQ7WLg2fIHhp+I1YcIjIatkp5EiIrV0yvodLxolM4YukDAC1S8NdxS4NvxELDhFZtfF9AuGglONErhYHMrlknKglXS6txM+HcwEAT/QPEZymLhYcIrJqbk72eLBXOwDA8trfNImoZayqXRreq70bega6iY5TBwsOEVm96+dT/Xo8Hzkl1wSnIbIOumoDvq491PYJM9jY789YcIjI6oX6uiCuowf0Bsn4H2QiujObjuWioLQS3i4qjAg3j6XhN2LBISKbcP03zFVcMk7UIq7vEj6xX5DQU8MbYn6JiIhMYEiYDwLaOqLkahV+SssRHYfIoqVmFSMtuwT2Cjke62s+S8NvxIJDRDZBIZdhcmwwgJrfPLlknOj2fVl7avjoSH94uajEhmkACw4R2Yyx0YFwVCpwKq8Ue89fER2HyCIVaCvwy9HapeFmOLn4OhYcIrIZaiclHurNJeNEd+LrfVmo0kuIDmqLiAC16DgNYsEhIpty/TfOxBP5yL5yVWwYIgtTWa3HN/tql4bXnvVmrlhwiMimdPZxwYDOnjBI4JJxomb65UguCst08FM7YFh3X9FxGsWCQ0Q258Yl41d11WLDEFkISZLqLA1XKsy7Qph3OiIiExgc6o0gDydoK6rxYypPGSdqikNZxTiao4G9nfkuDb8RCw4R2Ry5XIZJtUvGlydlcMk4URNcH70Z09Mf7s72YsM0AQsOEdmkR6MD4GSvwOn8MiSfKxIdh8is5WquYdOxPAB/nO1m7lhwiMgmuToo8UhUAABgWe1vpkR0c1/vvQC9QUJMiDu6+buKjtMkLDhEZLMm1042/u1UPrKKuGSc6GYqqvT4Zl8WAOBJM18afiMWHCKyWR292mBgFy9IEvBVcqboOERmaf3hSyi+WoV2bo4YGuYjOk6TseAQkU27vlnZmoPZKK/kknGiG0mShOW1X+EmxAbBzsyXht/IcpISEZnAwM5eCPF0RmlFNX5I5SnjRDfan3EFJ3K1cFDKMb5PoOg4zcKCQ0Q2TS6XYXJsEABg+R4uGSe60fLaU8Mf7BUANyfzXxp+IxYcIrJ5D0cFoI3KDucul2P32ULRcYjMQk7JNfx6/PrS8GCxYW4DCw4R2TyXG5aML+eScSIAwJdJmTBIQFxHD4T6uoiO02wsOERE+GPJ+O/pBcgsLBcbhkiw8spqrNpfszR8yl2WsbHfn7HgEBEBCPF0xuDQmiXjX3LJONm47w5mo7SiGh08nTE41Ft0nNvCgkNEVOvJ/jW/qX538CLKuGScbJTeIOGL2snFT/YPhlwuExvoNrHgEBHVGtDZEx29nFFWWY1vD2SLjkMkxG8n83Gh6CrUjko8XDs3zRKZtOAUFxcjISEBarUaarUaCQkJKCkpafD6qqoqvPzyy4iIiICzszP8/f0xadIkXLp0qc51gwYNgkwmq3MbP368KV8KEdkAmUyGv9TON/giKQN6A5eMk+1ZujsDAPBY3/ZwsrcTnOb2mbTgPP7440hLS8PmzZuxefNmpKWlISEhocHrr169ikOHDuH111/HoUOH8MMPP+D06dO4//776107bdo05ObmGm+ffvqpKV8KEdmIh3oFoK2TEtlXriHxRJ7oOESt6liOBvsyrsBOLsPkuCDRce6IyarZyZMnsXnzZuzduxcxMTEAgM8++wyxsbFIT09HaGhovceo1WokJibWue/DDz9E3759kZWVhfbt2xvvd3Jygq+vr6niE5GNcrRXYGK/IHz4+1l8visDw8P9REciajXLakdvRkb4wU/tKDjNnTHZCE5ycjLUarWx3ABAv379oFarkZSU1OTn0Wg0kMlkcHNzq3P/ypUr4enpie7du+Oll15CaWlpg89RWVkJrVZb50ZE1JCEfkFQKmQ4eKEYqVnFouMQtYoCbQU2HKmZEmKpS8NvZLKCk5eXB2/v+kvLvL29kZfXtGHfiooKvPLKK3j88cfh6upqvH/ChAlYtWoVtm/fjtdffx1r167FQw891ODzzJ8/3zgPSK1WIzDQss7TIKLW5e3qgPsj2wH4Yz4CkbVbsfcCqvQSooPaIjLQTXScO9bsgjN37tx6E3z/fDt48CCAmgl7fyZJ0k3v/7OqqiqMHz8eBoMBixYtqvN306ZNw9ChQxEeHo7x48fj+++/x9atW3Ho0KGbPtecOXOg0WiMt+xsro4gosZd/w1207E85JRcE5yGyLQqqvRYuc+yN/b7s2bPwZkxY8YtVywFBwfjyJEjyM/Pr/d3ly9fho+PT6OPr6qqwtixY5GRkYHff/+9zujNzfTu3RtKpRJnzpxB79696/29SqWCSqVq9DmIiG7Uzd8V/Tt5YM/ZInyZlIlXR4aJjkRkMutSc3ClXIeAto6I724d81ubXXA8PT3h6el5y+tiY2Oh0Wiwf/9+9O3bFwCwb98+aDQaxMXFNfi46+XmzJkz2LZtGzw8PG75s44fP46qqir4+XEyIBG1nCl3hWDP2SKs2peF54d0RhuV5S6ZJWqIJEnGycVPxAVDYaEb+/2ZyebghIWFYfjw4Zg2bRr27t2LvXv3Ytq0aRg1alSdFVRdu3bFunXrAADV1dV45JFHcPDgQaxcuRJ6vR55eXnIy8uDTqcDAJw7dw7z5s3DwYMHkZmZiY0bN+LRRx9Fr1690L9/f1O9HCKyQYO6eKODlzNKufEfWbGdZwpxpqAMbVR2GNfHeuaomnQfnJUrVyIiIgLx8fGIj49Hjx49sGLFijrXpKenQ6PRAAAuXryI9evX4+LFi+jZsyf8/PyMt+srr+zt7fHbb79h2LBhCA0NxfPPP4/4+Hhs3boVCoXClC+HiGyMXC4zzkfgxn9kra5PpB8bHQgXB6XgNC1HJkmSzf0bq9VqoVarodFobjm/h4hs2zWdHrH//g0lV6vwycTe3BeHrMqZ/FLc+7+dkMuAHX8bjEB3J9GRGtWcz2+eRUVE1AhHewUmxtTs6Pr5Li4ZJ+uybE/NP9Px3XzNvtw0FwsOEdEtTIr9Y+O/tOwS0XGIWsSVch1+OJQDAJgywDqWht+IBYeI6Ba48R9ZoxXJF1BZbUCPADWig9qKjtPiWHCIiJrg+mTjjUdzufEfWbyKKj2+Ss4EAEwd0KFJG/BaGhYcIqIm6ObviriOHtAbJHyZlCk6DtEdWXvoIopqN/YbGW4dG/v9GQsOEVETTa2dp7BqXxbKKqsFpyG6PXqDZJwwP+WuENgprLMKWOerIiIygRs3/lu9P0t0HKLbsvVkPjIKy6F2VGJstPVs7PdnLDhERE0kl8swbUAHAMCy3Rmo0hsEJyJqviU7zwMAJvZrD2crPn6EBYeIqBke7NUOnm1UuKSpwM9HLomOQ9QsKReuIOVCMewVckyOCxYdx6RYcIiImsFBqcCT/YMBAJ/uOA8b3AyeLNj10ZsHe7WDt4uD4DSmxYJDRNRME2OC4GSvwKm8Uuw4fVl0HKImOX+5DFtO5AMApt1tfRv7/RkLDhFRM6mdlHisb3sANaM4RJbg890ZkCRgaJg3Onm7iI5jciw4RES34S93hcBOLkPy+SIcuVgiOg5RowrLKrE25SIAGCfKWzsWHCKi29DOzRH3R/oDAD7dyVEcMm9f1R7LEBnohr4h7qLjtAoWHCKi2/TUwJrfhDcdzcWFonLBaYhu7ppOjxW1xzI8fbd1HstwMyw4RES3qauvKwZ28YJBgnFnWCJz831KNoqvVqG9uxOGdbfOYxluhgWHiOgOPF07ivPtwWwUlVUKTkNUl94g4fPdNeV76oAQKOS2MXoDsOAQEd2R2A4e6BGgRmW1AV8mXxAdh6iOjUdzcaHoKto6KfFolPUey3AzLDhERHdAJpPh6bs7AgBWJGfiqo6HcJJ5kCQJi7afAwA8ERcCR3uF4EStiwWHiOgODQ/3RXt3JxRfrcJ3By+KjkMEANh++jJO5mrhbK/A5Lgg0XFaHQsOEdEdUshlmDagZmfYz3adRzUP4SQzsHhbzejN4zHt4eZkLzhN62PBISJqAY9EBcLD2R4Xi69hAw/hJMEOZl7B/swrsFfIMdVGNvb7MxYcIqIW4GivwF/uqhnFWbTtHAwGHsJJ4lyfe/NwVDv4uFr3oZoNYcEhImohCbFBcHGww5mCPw41JGptJ3O1+P1UAeQyGCfA2yIWHCKiFuLqoMTk2GAAwKLtZyFJHMWh1re4dvRmZIQfgj2dBacRhwWHiKgFPdk/GI5KBY5c1GDXmULRccjGXCgqx8+1c8D+Osh2R28AFhwiohbl0UaFx/q2BwB8vO2s4DRkaz7ZcR4GCRgU6oXu/mrRcYRiwSEiamHT7g6BUiHDvowrOJh5RXQcshH52gqsTanZh+mZQZ0EpxGPBYeIqIX5qR3xSFQAAI7iUOtZujsDOr0B0UFt0TfEXXQc4VhwiIhM4Om7O0IuA7alX8axHI3oOGTlist1WLm35iy0Zwdz9AZgwSEiMolgT2eMjvQH8MeqFiJTWbYnA+U6Pbr5uWJQqJfoOGbBpAWnuLgYCQkJUKvVUKvVSEhIQElJSaOPeeKJJyCTyerc+vXrV+eayspKPPfcc/D09ISzszPuv/9+XLzI81+IyLxcnwex8VguzhaUCU5D1kpztQrL92QCAJ4f0hkymUxsIDNh0oLz+OOPIy0tDZs3b8bmzZuRlpaGhISEWz5u+PDhyM3NNd42btxY5+9nzZqFdevWYfXq1di9ezfKysowatQo6PV6U70UIqJmC/V1wb3dfCBJHMUh01m2JwOlldXo6uuC+G4+ouOYDTtTPfHJkyexefNm7N27FzExMQCAzz77DLGxsUhPT0doaGiDj1WpVPD19b3p32k0GixduhQrVqzA0KFDAQBff/01AgMDsXXrVgwbNqzlXwwR0W16dnAnJJ7Ix49pOZg5pDPaeziJjkRWRFtRhWV7MgAAz93TGXI5R2+uM9kITnJyMtRqtbHcAEC/fv2gVquRlJTU6GO3b98Ob29vdOnSBdOmTUNBQYHx71JSUlBVVYX4+Hjjff7+/ggPD2/weSsrK6HVauvciIhaQ89ANwzs4gW9QcJH286IjkNW5ss9mSitqEZn7zYYEX7zgQFbZbKCk5eXB29v73r3e3t7Iy8vr8HHjRgxAitXrsTvv/+Od999FwcOHMA999yDyspK4/Pa29ujbdu2dR7n4+PT4PPOnz/fOA9IrVYjMDDwDl4ZEVHzzBzaGQCw9lAOsoquCk5D1qKsshqf764dvRnC0Zs/a3bBmTt3br1JwH++HTx4EABuOtFJkqRGJ0CNGzcO9913H8LDwzF69Ghs2rQJp0+fxi+//NJorsaed86cOdBoNMZbdnZ2M14xEdGd6d2+LUdxqMV9lZwJzbUqdPByxn0RfqLjmJ1mz8GZMWMGxo8f3+g1wcHBOHLkCPLz65+me/nyZfj4NH0SlJ+fH4KCgnDmTM1/FHx9faHT6VBcXFxnFKegoABxcXE3fQ6VSgWVStXkn0lE1NJmDu2MHacvY+2hHMwYzLk4dGfKK6vx+a7rc286QcHRm3qaPYLj6emJrl27NnpzcHBAbGwsNBoN9u/fb3zsvn37oNFoGiwiN1NUVITs7Gz4+dW006ioKCiVSiQmJhqvyc3NxbFjx5r1vERErYmjONSSvt57AVfKdQj2cMLoHv6i45glk83BCQsLw/DhwzFt2jTs3bsXe/fuxbRp0zBq1Kg6K6i6du2KdevWAQDKysrw0ksvITk5GZmZmdi+fTtGjx4NT09PPPjggwAAtVqNKVOm4MUXX8Rvv/2G1NRUTJw4EREREcZVVURE5mgW5+JQC7im02PJzvMAalbp2Sm4Z+/NmPRdWblyJSIiIhAfH4/4+Hj06NEDK1asqHNNeno6NJqabcwVCgWOHj2KBx54AF26dMHkyZPRpUsXJCcnw8XFxfiY//3vfxgzZgzGjh2L/v37w8nJCRs2bIBCoTDlyyEiuiO92rfFoFCO4tCd+XrvBRSV6xDo7ogxvdqJjmO2ZJIkSaJDtDatVgu1Wg2NRgNXV1fRcYjIhqRmFePBRUlQyGXY9uIgzsWhZimrrMbd/7cNV8p1+L+He2BsH9taFdycz2+OaxERtSKO4tCdWL4nA1fKdQjxdMZDvTl60xgWHCKiVjZzyB9zcS4UlQtOQ5ZCc7UKn9bOvZk1tDPn3twC3x0iolZ24yjOwq0cxaGm+Xz3eZRWVCPUx4Urp5qABYeISICX4mtWk/6YloP0vFLBacjcFZVVYlntrsUv3NuFuxY3AQsOEZEA4e3UuC/CD5IE/HdLuug4ZOY+3Xke5To9wtu5Ylh3nhjeFCw4RESCvHBvF8hlQOKJfKRmFYuOQ2aqQFuBL5MyAQAvxoc2etwR/YEFh4hIkE7ebfBw7wAAHMWhhn287Swqqw2ICmqLQV28RMexGCw4REQCzRzaGUqFDHvOFmHP2ULRccjMXCy+im/2ZwEAXozvwtGbZmDBISISKKCtEybEBAEA/u/XdNjg3qvUiPcST6NKLyG2gwfiOnqKjmNRWHCIiAR7dnAnOCoVOJxdgsQT+aLjkJk4mavFutQcAMArI7oKTmN5WHCIiATzclHhL3cFA6iZi6M3cBSHgAWbT0GSgPsi/BAZ6CY6jsVhwSEiMgNPDegIVwc7nM4vM/7WTrYr6Vwhtqdfhp1chr8NCxUdxyKx4BARmQG1kxLPDO4EAHh3Szqu6fSCE5EoBoOEf286BQB4PKY9gj2dBSeyTCw4RERm4om4YLRzc0SupgLL9mSIjkOC/HI0F0cuauBsr8DzteeWUfOx4BARmQkHpcL4dcTi7edQWFYpOBG1Nl21wbgn0lN3d4RnG5XgRJaLBYeIyIzcH+mPiHZqlFVW430exGlzVu3PwoWiq/Bso8LUASGi41g0FhwiIjMil8vw6sgwAMA3+7NwtqBMcCJqLWWV1fjgt5pSO3NoZzir7AQnsmwsOEREZia2oweGhnlDb5CwYPMp0XGolXy87SyKynUI8XTG+D6BouNYPBYcIiIz9MqIrlDIZUg8kY9954tExyETy75yFUt31Uwsf3VkGJQKfjzfKb6DRERmqJO3Cx7rW/Nb/DsbT8LAzf+s2jsbT0KnN6B/p5rRO7pzLDhERGZq5pAucLZX4PBFDX5M4+Z/1mrv+SJsOpYHuQx4fVQ3HqjZQlhwiIjMlJeLCs/eU7P53783nUJZZbXgRNTS9AYJ8zacAAA81rc9uvq6Ck5kPVhwiIjM2JS7QhDs4YSC0kp89PtZ0XGohX13MBsncrVwcbDD7Hu7iI5jVVhwiIjMmMpOgX+O7gYAWLr7PDIKywUnopZSWlFl3NRv5pDO8OCmfi2KBYeIyMzd09UHg0O9UKWX8K+fT4iOQy3ko21nUVimQwdPZ0yKDRYdx+qw4BARWYDXR3WDUiHD76cK8PupfNFx6A6dLSjDst1/LAu3t+PHcUvjO0pEZAE6eLXBX+6q2br/Xz+fRGU1Txu3VJIk4Z8/HUOVXsI9Xb0xhMvCTYIFh4jIQjx3T2d4uaiQUViOZbszRceh27ThSC6SzhVBZSfH3NHduSzcRFhwiIgsRBuVHeaM6AoA+OC3M7hYfFVwImqu0ooqvFU7j+rZwZ3Q3sNJcCLrxYJDRGRBHuzVDjEh7rhWpccbPx2HJHGHY0vyv8QzKCitRLCHE566u4PoOFaNBYeIyILIZDK8/WAElAoZfjtVgF+P54mORE10MleLL5MzAQBvPhAOB6VCbCArZ9KCU1xcjISEBKjVaqjVaiQkJKCkpKTRx8hkspve/vOf/xivGTRoUL2/Hz9+vClfChGR2ejk3QbTB3YEAMxdfwKlFVWCE9GtGAwS/vHjMegNEkaE+2JgFy/RkayeSQvO448/jrS0NGzevBmbN29GWloaEhISGn1Mbm5unduyZcsgk8nw8MMP17lu2rRpda779NNPTflSiIjMyrODOyHIwwl52gq8u+W06Dh0C1/vu4CUC8Vwtlfg9VHdRMexCXameuKTJ09i8+bN2Lt3L2JiYgAAn332GWJjY5Geno7Q0NCbPs7X17fOn3/66ScMHjwYHTrU/a7Sycmp3rVERLbCQanAW2PCkbB0P75KzsTDvQMQEaAWHYtu4lLJNSzYdAoA8PKIrvB3cxScyDaYbAQnOTkZarXaWG4AoF+/flCr1UhKSmrSc+Tn5+OXX37BlClT6v3dypUr4enpie7du+Oll15CaWlpg89TWVkJrVZb50ZEZOkGdPbC/ZH+MEjAKz8cQZXeIDoS/Ykk1Xw1Va7TIyqoLSbGBImOZDNMVnDy8vLg7V1/8yJvb2/k5TVtUtyXX34JFxcXPPTQQ3XunzBhAlatWoXt27fj9ddfx9q1a+tdc6P58+cb5wGp1WoEBgY278UQEZmp10d1g5uTEscvafHJ9nOi49CfrD98Cb+fKoC9Qo4FD0dALueeN62l2QVn7ty5DU4Evn47ePAgANx08yJJkpq8qdGyZcswYcIEODg41Ll/2rRpGDp0KMLDwzF+/Hh8//332Lp1Kw4dOnTT55kzZw40Go3xlp2d3cxXTURknrxcVJg7ujsA4IPfzyA9r+HRbGpdV8p1eHNDzZ43M+7phE7eLoIT2ZZmz8GZMWPGLVcsBQcH48iRI8jPr39eyuXLl+Hj43PLn7Nr1y6kp6djzZo1t7y2d+/eUCqVOHPmDHr37l3v71UqFVQqntJKRNbpgZ7++PlILraezMdL3x3GumfiYKfgLiCi/evnE7hSrkOoj4tx1Ru1nmYXHE9PT3h6et7yutjYWGg0Guzfvx99+/YFAOzbtw8ajQZxcXG3fPzSpUsRFRWFyMjIW157/PhxVFVVwc/P79YvgIjIyshkMrzzYDj2ZxThaI4Gn+48j2cHdxIdy6ZtPpaHdak5kMuABY/04GGaApjsHQ8LC8Pw4cMxbdo07N27F3v37sW0adMwatSoOiuounbtinXr1tV5rFarxXfffYepU6fWe95z585h3rx5OHjwIDIzM7Fx40Y8+uij6NWrF/r372+ql0NEZNa8XR3wRu1XVe9vPYPT+fyqSpTLpZV4dd1RAMDTAzuiZ6Cb2EA2yqSVcuXKlYiIiEB8fDzi4+PRo0cPrFixos416enp0Gg0de5bvXo1JEnCY489Vu857e3t8dtvv2HYsGEIDQ3F888/j/j4eGzduhUKBXeFJCLb9VDvdrinqzd0egNe/PYwV1UJIEkS5vxwBFfKdQjzc8ULQ7uIjmSzZJINHmSi1WqhVquh0Wjg6uoqOg4RUYvJ01Rg2MKd0FyrwrODO+Jvw7qKjmRTvj2Qjb+vPQJ7hRw/zeiPMD9+xrSk5nx+80tBIiIr4qt2wDsPRgAAFm0/h33niwQnsh3ZV67izQ3HAQCz47uw3AjGgkNEZGXu6+GHR6MCIEnAC2vSoLnGs6pMTW+Q8OJ3h1Gu06NPcFtMG8CTwkVjwSEiskJv3N8dQR5OuKSpwGvrjsIGZyO0qg9+O4P9GVfgbK/Au4/2hIIb+gnHgkNEZIXaqOywcFzNB+3PR3KxLjVHdCSrlXyuCB/+fgYA8PaDEWjv4SQ4EQEsOEREVqtX+7aYNaQzAOD1H4/hbEGZ4ETWp6isEjNXp8IgAY9GBWBMr3aiI1EtFhwiIiv2zOBO6NfBHeU6PZ5ZmYKrumrRkayGwSBh9reHUVBaiU7ebfDmA91FR6IbsOAQEVkxhVyGDx7rBW8XFU7nl+HVHzgfp6V8svMcdpy+DJWdHB8/3htO9s0+HIBMiAWHiMjKebs44MPHekEhl+HHtEtYuS9LdCSLt/P0Zfz313QAwNz7uyPUlwdpmhsWHCIiGxDTwQN/H1ZzTM68DSdwOLtEbCALllV0Fc+tqpl3My46EOP7BIqORDfBgkNEZCOeursD4rv5QKc34KkVB5GvrRAdyeJc1VXjqRUHoblWhZ6Bbpg3pjtkMi4JN0csOERENkImk+G/YyPRybsN8rWVeOqrg6io0ouOZTEkScLLa4/iVF4pPNuo8MnEKKjseAaiuWLBISKyIa4OSiydHA03JyUOX9Tgb98f4aTjJvrgt7PYcPgS7OQyLJrQG75qB9GRqBEsOERENibIwxmLJ0TBTi7DhsOX8NHvZ0VHMntrUy7if1tPAwDmPRCOviHughPRrbDgEBHZoNiOHpj3QDgA4N3E01iXelFwIvOVdK4Qr/xwBAAwfWBHPB7TXnAiagoWHCIiG/V4THtMvSsEAPC3745ge3qB4ETm50x+KZ5ekYIqvYT7evgZV6KR+WPBISKyYa+ODMOYnv6oNkj469eHkJpVLDqS2bhYfBWTl+1HaUU1ooLa4t1HIyHnIZoWgwWHiMiGyeUy/N8jkbi7ixeuVenxl+UHeGYVgAJtBSZ+vg+XNBXo6OWMzyZFw0HJFVOWhAWHiMjG2dvJsXhCb0QGuqH4ahUmfr4PGYXlomMJU1yuw8Sl+5BZdBUBbR3x9dQYuDvbi45FzcSCQ0REcFbZ4Ysn+qCLTxvkaSvw2JK9yLTBklNyVYdJy/bjdH4ZvF1U+GZqP/ipHUXHotvAgkNERAAAd2d7fDOtn7HkjLexklNYVonxS/biaI4G7s72WDk1Bu09nETHotvEgkNEREaebVT4Zlo/dPauKTljP03GyVyt6Fgml19b6E7llcLLRYXVT/VDZx8eoGnJWHCIiKiO6yUn1McFBaWVGPtpMvZnXBEdy2QyC8sx9tNknC0og5/aAd8+HYsuLDcWjwWHiIjq8XJR4dunY9EnuC1KK6qRsHQfthzPEx2rxaVcuIIHF+3BhaKrCHR3xLdPxyLE01l0LGoBLDhERHRTaiclVkyJwdAwH1RWG/D01yn4dMc5qzm76pcjuXjss30ovlqFHgFq/PDX/gh055wba8GCQ0REDXJQKvDJxN54rG97SBIwf9MpzFqTZtGnkOsNEv77azqe/eYQdNUGDA3zweqn+sHLRSU6GrUgFhwiImqUnUKOdx4Mx78e6A47uQw/pV3Co58k40KR5a2wKiqrxKRl+/DRtpoDRp/sH4xPE6LgZG8nOBm1NBYcIiK6JZlMhoTYYKyYEoO2TkoczdFg5Pu78H3KRYv5yirpXCHu+2A39pwtgqNSgffH98Qbo7tDweMXrJJMspR/MluQVquFWq2GRqOBq6ur6DhERBYlp+QaXliTZlxZNTrSH/Pu7462Zrrb7zWdHgs2n8LypEwAQEcvZ3wyMYrLwC1Qcz6/WXBYcIiImk1vkLB4+1n8b+sZ6A0S3J3t8drIMDzUux1kMvMZEdl5+jLeWH/cePTE4zHt8drIMDir+JWUJWLBuQUWHCKilpGWXYKXvz+C9PxSAEBMiDteuy8MPQLchObKvnIVb/1yAr8ezwcA+LiqsODhHhgU6i00F90ZFpxbYMEhImo5VXoDPt+Vgfd/O42KKgMAYFQPP7xwbxd09GrTqllyNdfw0e9n8e3BbFTpJSjkMkyODcasezvD1UHZqlmo5TXn89ukk4zffvttxMXFwcnJCW5ubk16jCRJmDt3Lvz9/eHo6IhBgwbh+PHjda6prKzEc889B09PTzg7O+P+++/HxYsXTfAKiIjoVpQKOf46qCO2zh6Ih3q1g0wG/HwkF0Pf24GpXx7EvvNFJp+IfCxHg799dxgD/7MdK/dloUov4a5Onvjl+bvwz9HdWG5skElHcN544w24ubnh4sWLWLp0KUpKSm75mAULFuDtt9/G8uXL0aVLF7z11lvYuXMn0tPT4eJSMyHsr3/9KzZs2IDly5fDw8MDL774Iq5cuYKUlBQoFIpb/gyO4BARmc6JS1q8l3gaW0/mG+/r4OWMh3sH4P5I/xbbTK9AW4FNx/LwY1oOUrNKjPf3DXHH7Hu7oF8Hjxb5OWQ+zO4rquXLl2PWrFm3LDiSJMHf3x+zZs3Cyy+/DKBmtMbHxwcLFizA008/DY1GAy8vL6xYsQLjxo0DAFy6dAmBgYHYuHEjhg0bdss8LDhERKZ37nIZlu7OwA+HLhq/ugKATt5tMLCLF/qGuKO7vyvauTnecmKyJEkoKtfh+CUt9p0vQvL5IqRll+D6J5idXIaREX6YHBeE3u3bmtVEZ2o5zfn8Nqtp5BkZGcjLy0N8fLzxPpVKhYEDByIpKQlPP/00UlJSUFVVVecaf39/hIeHIykp6aYFp7KyEpWVlcY/a7XWfzIuEZFoHb3a4J0HIzBnRFdsPpaHHw7lYF9GEc4WlOFsQU35AQBXBzsEtHWCj6sKHm1UUCpkUMhlqKgyoOSqDkXlOmQUlqPkalW9n9G7vRvu6+GP0T384O3q0NovkcyYWRWcvLyag9x8fHzq3O/j44MLFy4Yr7G3t0fbtm3rXXP98X82f/58vPnmmyZITEREt+LioMSj0YF4NDoQmqtV2H22ELvOXMbhixqcyS+FtqIaJ3K1OJHb+PPIZECQuxOig93Rr4MH4jp6wN/NsXVeBFmcZhecuXPn3rIsHDhwANHR0bcd6s9Di5IkNWn4sqFr5syZg9mzZxv/rNVqERgYeNv5iIjo9qidlLivhx/u6+EHAKis1uNcQTnytRXI11bgylUd9HoJ1QYJ9nZytHWyR1snJdp7OKGjVxs4KG89z5IIuI2CM2PGDIwfP77Ra4KDg28rjK+vL4CaURo/Pz/j/QUFBcZRHV9fX+h0OhQXF9cZxSkoKEBcXNxNn1elUkGl4iFqRETmRmWnQDd/V3Tz53xIalnNLjienp7w9PQ0RRaEhITA19cXiYmJ6NWrFwBAp9Nhx44dWLBgAQAgKioKSqUSiYmJGDt2LAAgNzcXx44dw//93/+ZJBcRERFZFpPOwcnKysKVK1eQlZUFvV6PtLQ0AECnTp3Qpk3N5k9du3bF/Pnz8eCDD0Imk2HWrFl455130LlzZ3Tu3BnvvPMOnJyc8PjjjwMA1Go1pkyZghdffBEeHh5wd3fHSy+9hIiICAwdOtSUL4eIiIgshEkLzj//+U98+eWXxj9fH5XZtm0bBg0aBABIT0+HRqMxXvP3v/8d165dwzPPPIPi4mLExMRgy5Ytxj1wAOB///sf7OzsMHbsWFy7dg1DhgzB8uXLm7QHDhEREVk/HtXAfXCIiIgsgtkc1UBEREQkAgsOERERWR0WHCIiIrI6LDhERERkdVhwiIiIyOqw4BAREZHVYcEhIiIiq8OCQ0RERFaHBYeIiIisjkmPajBX1zdv1mq1gpMQERFRU13/3G7KIQw2WXBKS0sBAIGBgYKTEBERUXOVlpZCrVY3eo1NnkVlMBhw6dIluLi4QCaTtehza7VaBAYGIjs7m+dc3QTfn4bxvWkc35/G8f1pHN+fhlnSeyNJEkpLS+Hv7w+5vPFZNjY5giOXyxEQEGDSn+Hq6mr2/6CIxPenYXxvGsf3p3F8fxrH96dhlvLe3Grk5jpOMiYiIiKrw4JDREREVocFp4WpVCq88cYbUKlUoqOYJb4/DeN70zi+P43j+9M4vj8Ns9b3xiYnGRMREZF14wgOERERWR0WHCIiIrI6LDhERERkdVhwiIiIyOqw4LSgRYsWISQkBA4ODoiKisKuXbtERzIbO3fuxOjRo+Hv7w+ZTIYff/xRdCSzMX/+fPTp0wcuLi7w9vbGmDFjkJ6eLjqW2Vi8eDF69Ohh3IQsNjYWmzZtEh3LLM2fPx8ymQyzZs0SHcUszJ07FzKZrM7N19dXdCyzkpOTg4kTJ8LDwwNOTk7o2bMnUlJSRMdqESw4LWTNmjWYNWsWXnvtNaSmpmLAgAEYMWIEsrKyREczC+Xl5YiMjMRHH30kOorZ2bFjB5599lns3bsXiYmJqK6uRnx8PMrLy0VHMwsBAQH497//jYMHD+LgwYO455578MADD+D48eOio5mVAwcOYMmSJejRo4foKGale/fuyM3NNd6OHj0qOpLZKC4uRv/+/aFUKrFp0yacOHEC7777Ltzc3ERHaxFcJt5CYmJi0Lt3byxevNh4X1hYGMaMGYP58+cLTGZ+ZDIZ1q1bhzFjxoiOYpYuX74Mb29v7NixA3fffbfoOGbJ3d0d//nPfzBlyhTRUcxCWVkZevfujUWLFuGtt95Cz549sXDhQtGxhJs7dy5+/PFHpKWliY5ill555RXs2bPHar9t4AhOC9DpdEhJSUF8fHyd++Pj45GUlCQoFVkqjUYDoOZDnOrS6/VYvXo1ysvLERsbKzqO2Xj22Wdx3333YejQoaKjmJ0zZ87A398fISEhGD9+PM6fPy86ktlYv349oqOj8eijj8Lb2xu9evXCZ599JjpWi2HBaQGFhYXQ6/Xw8fGpc7+Pjw/y8vIEpSJLJEkSZs+ejbvuugvh4eGi45iNo0ePok2bNlCpVJg+fTrWrVuHbt26iY5lFlavXo1Dhw5xpPgmYmJi8NVXX+HXX3/FZ599hry8PMTFxaGoqEh0NLNw/vx5LF68GJ07d8avv/6K6dOn4/nnn8dXX30lOlqLsMnTxE1FJpPV+bMkSfXuI2rMjBkzcOTIEezevVt0FLMSGhqKtLQ0lJSUYO3atZg8eTJ27Nhh8yUnOzsbM2fOxJYtW+Dg4CA6jtkZMWKE8X9HREQgNjYWHTt2xJdffonZs2cLTGYeDAYDoqOj8c477wAAevXqhePHj2Px4sWYNGmS4HR3jiM4LcDT0xMKhaLeaE1BQUG9UR2ihjz33HNYv349tm3bhoCAANFxzIq9vT06deqE6OhozJ8/H5GRkXj//fdFxxIuJSUFBQUFiIqKgp2dHezs7LBjxw588MEHsLOzg16vFx3RrDg7OyMiIgJnzpwRHcUs+Pn51fslISwszGoWx7DgtAB7e3tERUUhMTGxzv2JiYmIi4sTlIoshSRJmDFjBn744Qf8/vvvCAkJER3J7EmShMrKStExhBsyZAiOHj2KtLQ04y06OhoTJkxAWloaFAqF6IhmpbKyEidPnoSfn5/oKGahf//+9bakOH36NIKCggQlaln8iqqFzJ49GwkJCYiOjkZsbCyWLFmCrKwsTJ8+XXQ0s1BWVoazZ88a/5yRkYG0tDS4u7ujffv2ApOJ9+yzz+Kbb77BTz/9BBcXF+NIoFqthqOjo+B04r366qsYMWIEAgMDUVpaitWrV2P79u3YvHmz6GjCubi41Jur5ezsDA8PD87hAvDSSy9h9OjRaN++PQoKCvDWW29Bq9Vi8uTJoqOZhRdeeAFxcXF45513MHbsWOzfvx9LlizBkiVLREdrGRK1mI8//lgKCgqS7O3tpd69e0s7duwQHclsbNu2TQJQ7zZ58mTR0YS72fsCQPriiy9ERzMLf/nLX4z/Xnl5eUlDhgyRtmzZIjqW2Ro4cKA0c+ZM0THMwrhx4yQ/Pz9JqVRK/v7+0kMPPSQdP35cdCyzsmHDBik8PFxSqVRS165dpSVLloiO1GK4Dw4RERFZHc7BISIiIqvDgkNERERWhwWHiIiIrA4LDhEREVkdFhwiIiKyOiw4REREZHVYcIiIiMjqsOAQERGR1WHBISIiIqvDgkNERERWhwWHiIiIrA4LDhEREVmd/wdTt4dUDEYJ+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "\n", + "x = np.linspace(0, 2*np.pi, 1001)\n", + "y = np.sin(x)\n", + "f = plt.plot(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2de4ff72", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 4df60bc88e675d648b73a7a2097c673852e3846c Mon Sep 17 00:00:00 2001 From: jayanthsaish <81634348+jayanthsaish@users.noreply.github.com> Date: Wed, 15 May 2024 16:21:32 +0530 Subject: [PATCH 03/10] Online commit --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index da926cc..6b885f2 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,7 @@ # Practice with git and GitHub I am Jayanth Saish and i edited this file! +I am Jayanth Saish and i edited this file online! This is a very simple repository for practicing with git and GitHub. git is a utility for *version control*. When a body of code is tracked with git, it is easy to see how the software has evolved over time, to roll back changes when needed, and to incorporate modifications by multiple collaborators. In this activity, we're going to focus on core git workflows for single-person projects. We may do a follow-up activity later in the quarter on workflows for collaborative projects. From 23c95e29154615179cc4a8e6513a69e0df1d9d75 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 16:34:34 +0530 Subject: [PATCH 04/10] update --- practice - folder/Git Practice.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 650f297..29cd1af 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -20,7 +20,6 @@ "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np\n", - "\n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From 73b0d5282ed1e3e172b274dfad6cee2c01dd6312 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 16:38:20 +0530 Subject: [PATCH 05/10] remove numpy as np --- practice - folder/Git Practice.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 29cd1af..1353643 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -19,7 +19,6 @@ ], "source": [ "from matplotlib import pyplot as plt\n", - "import numpy as np\n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From 396eb35232725a2935993fbc9469acd0d4e342a1 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 16:39:11 +0530 Subject: [PATCH 06/10] Revert "remove numpy as np" This reverts commit 73b0d5282ed1e3e172b274dfad6cee2c01dd6312. --- practice - folder/Git Practice.ipynb | 1 + 1 file changed, 1 insertion(+) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 1353643..29cd1af 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -19,6 +19,7 @@ ], "source": [ "from matplotlib import pyplot as plt\n", + "import numpy as np\n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From fc34fbdd53c4495bb1c7e929f734a41669586b85 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 18:14:14 +0530 Subject: [PATCH 07/10] removed import numpy --- practice - folder/Git Practice.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 29cd1af..1353643 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -19,7 +19,6 @@ ], "source": [ "from matplotlib import pyplot as plt\n", - "import numpy as np\n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From 525c6b6ea8a72531f76935184802b3fda9553ce2 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 18:22:32 +0530 Subject: [PATCH 08/10] imported numpy as np --- practice - folder/Git Practice.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 1353643..e73d8c8 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "415b8726", "metadata": {}, "outputs": [ @@ -19,6 +19,7 @@ ], "source": [ "from matplotlib import pyplot as plt\n", + "import numpy as np \n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From e92894ccbd34596029567256108f6e21d78b60f5 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 18:38:19 +0530 Subject: [PATCH 09/10] updatd np --- practice - folder/Git Practice.ipynb | 1 + 1 file changed, 1 insertion(+) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 1353643..29cd1af 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -19,6 +19,7 @@ ], "source": [ "from matplotlib import pyplot as plt\n", + "import numpy as np\n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)" From f17af5c1ace4f6171731ab05f6fdf5acdfc17067 Mon Sep 17 00:00:00 2001 From: Jayanth Date: Wed, 15 May 2024 18:43:45 +0530 Subject: [PATCH 10/10] updtd np --- practice - folder/Git Practice.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/practice - folder/Git Practice.ipynb b/practice - folder/Git Practice.ipynb index 7bc66ae..e73d8c8 100644 --- a/practice - folder/Git Practice.ipynb +++ b/practice - folder/Git Practice.ipynb @@ -19,7 +19,7 @@ ], "source": [ "from matplotlib import pyplot as plt\n", - + "import numpy as np \n", "x = np.linspace(0, 2*np.pi, 1001)\n", "y = np.sin(x)\n", "f = plt.plot(x,y)"