|
| 1 | +/* pcmsolver_copyright_start */ |
| 2 | +/* |
| 3 | + * PCMSolver, an API for the Polarizable Continuum Model |
| 4 | + * Copyright (C) 2013 Roberto Di Remigio, Luca Frediani and contributors |
| 5 | + * |
| 6 | + * This file is part of PCMSolver. |
| 7 | + * |
| 8 | + * PCMSolver is free software: you can redistribute it and/or modify |
| 9 | + * it under the terms of the GNU Lesser General Public License as published by |
| 10 | + * the Free Software Foundation, either version 3 of the License, or |
| 11 | + * (at your option) any later version. |
| 12 | + * |
| 13 | + * PCMSolver is distributed in the hope that it will be useful, |
| 14 | + * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | + * GNU Lesser General Public License for more details. |
| 17 | + * |
| 18 | + * You should have received a copy of the GNU Lesser General Public License |
| 19 | + * along with PCMSolver. If not, see <http://www.gnu.org/licenses/>. |
| 20 | + * |
| 21 | + * For information on the complete list of contributors to the |
| 22 | + * PCMSolver API, see: <http://pcmsolver.github.io/pcmsolver-doc> |
| 23 | + */ |
| 24 | +/* pcmsolver_copyright_end */ |
| 25 | + |
| 26 | +#ifndef PURISIMAINTEGRATOR_HPP |
| 27 | +#define PURISIMAINTEGRATOR_HPP |
| 28 | + |
| 29 | +#include <cmath> |
| 30 | +#include <functional> |
| 31 | +#include <iosfwd> |
| 32 | +#include <stdexcept> |
| 33 | +#include <tuple> |
| 34 | +#include <vector> |
| 35 | + |
| 36 | +#include "Config.hpp" |
| 37 | + |
| 38 | +#include <Eigen/Dense> |
| 39 | + |
| 40 | +#include "IntegratorHelperFunctions.hpp" |
| 41 | +#include "Element.hpp" |
| 42 | +#include "AnisotropicLiquid.hpp" |
| 43 | +#include "IonicLiquid.hpp" |
| 44 | +#include "SphericalDiffuse.hpp" |
| 45 | +#include "UniformDielectric.hpp" |
| 46 | +#include "Vacuum.hpp" |
| 47 | + |
| 48 | +/*! \file PurisimaIntegrator.hpp |
| 49 | + * \struct PurisimaIntegrator |
| 50 | + * \brief Implementation of the single and double layer operators matrix representation using |
| 51 | + * one-point collocation and Purisima's strategy for the diagonal of D |
| 52 | + * \author Roberto Di Remigio |
| 53 | + * \date 2015 |
| 54 | + * |
| 55 | + * Calculates the diagonal elements of S as: |
| 56 | + * \f[ |
| 57 | + * S_{ii} = factor_ * \sqrt{\frac{4\pi}{a_i}} |
| 58 | + * \f] |
| 59 | + * while the diagonal elements of D are: |
| 60 | + * \f[ |
| 61 | + * D_{ii} = -\left(2\pi + \sum_{j\neq i}D_{ij}a_j \right)\frac{1}{a_i} |
| 62 | + * \f] |
| 63 | + * The original reference is \cite Purisima1995 |
| 64 | + */ |
| 65 | + |
| 66 | +using std::placeholders::_1; |
| 67 | +using std::placeholders::_2; |
| 68 | +using std::placeholders::_3; |
| 69 | + |
| 70 | +struct PurisimaIntegrator |
| 71 | +{ |
| 72 | + PurisimaIntegrator() : factor_(1.07) {} |
| 73 | + ~PurisimaIntegrator() {} |
| 74 | + |
| 75 | + /**@{ Single and double layer potentials for a Vacuum Green's function by collocation */ |
| 76 | + /*! \tparam DerivativeTraits how the derivative of the Greens's function are calculated |
| 77 | + * \param[in] gf Green's function |
| 78 | + * \param[in] e list of finite elements |
| 79 | + */ |
| 80 | + template <typename DerivativeTraits> |
| 81 | + Eigen::MatrixXd singleLayer(const Vacuum<DerivativeTraits, PurisimaIntegrator> & gf, const std::vector<Element> & e) const { |
| 82 | + auto f = this->factor_; |
| 83 | + auto diagonal = [f] (const Element & el) -> double { return (f * std::sqrt(4 * M_PI / el.area())); }; |
| 84 | + auto kernelS = std::bind(&Vacuum<DerivativeTraits, PurisimaIntegrator>::kernelS, gf, _1, _2); |
| 85 | + return integrator::singleLayer(e, diagonal, kernelS); |
| 86 | + } |
| 87 | + /*! \tparam DerivativeTraits how the derivative of the Greens's function are calculated |
| 88 | + * \param[in] gf Green's function |
| 89 | + * \param[in] e list of finite elements |
| 90 | + */ |
| 91 | + template <typename DerivativeTraits> |
| 92 | + Eigen::MatrixXd doubleLayer(const Vacuum<DerivativeTraits, PurisimaIntegrator> & gf, const std::vector<Element> & e) const { |
| 93 | + auto f = this->factor_; |
| 94 | + auto diagonal = [f] (const Element & el) -> double { return (-f * std::sqrt(M_PI/ el.area()) * (1.0 / el.sphere().radius())); }; |
| 95 | + auto kernelD = std::bind(&Vacuum<DerivativeTraits, PurisimaIntegrator>::kernelD, gf, _1, _2, _3); |
| 96 | + return integrator::doubleLayer(e, diagonal, kernelD); |
| 97 | + } |
| 98 | + /**@}*/ |
| 99 | + |
| 100 | + /**@{ Single and double layer potentials for a UniformDielectric Green's function by collocation */ |
| 101 | + /*! \tparam DerivativeTraits how the derivative of the Greens's function are calculated |
| 102 | + * \param[in] gf Green's function |
| 103 | + * \param[in] e list of finite elements |
| 104 | + */ |
| 105 | + template <typename DerivativeTraits> |
| 106 | + Eigen::MatrixXd singleLayer(const UniformDielectric<DerivativeTraits, PurisimaIntegrator> & gf, const std::vector<Element> & e) const { |
| 107 | + auto f = this->factor_; |
| 108 | + auto epsInv = 1.0 / gf.epsilon(); |
| 109 | + auto diagonal = [f, epsInv] (const Element & el) -> double { return (f * std::sqrt(4 * M_PI / el.area()) * epsInv); }; |
| 110 | + auto kernelS = std::bind(&UniformDielectric<DerivativeTraits, PurisimaIntegrator>::kernelS, gf, _1, _2); |
| 111 | + return integrator::singleLayer(e, diagonal, kernelS); |
| 112 | + } |
| 113 | + /*! \tparam DerivativeTraits how the derivative of the Greens's function are calculated |
| 114 | + * \param[in] gf Green's function |
| 115 | + * \param[in] e list of finite elements |
| 116 | + */ |
| 117 | + template <typename DerivativeTraits> |
| 118 | + Eigen::MatrixXd doubleLayer(const UniformDielectric<DerivativeTraits, PurisimaIntegrator> & gf, const std::vector<Element> & e) const { |
| 119 | + auto f = this->factor_; |
| 120 | + auto diagonal = [f] (const Element & el) -> double { return (-f * std::sqrt(M_PI/ el.area()) * (1.0 / el.sphere().radius())); }; |
| 121 | + auto kernelD = std::bind(&UniformDielectric<DerivativeTraits, PurisimaIntegrator>::kernelD, gf, _1, _2, _3); |
| 122 | + return integrator::doubleLayer(e, diagonal, kernelD); |
| 123 | + } |
| 124 | + /**@}*/ |
| 125 | + |
| 126 | + /**@{ Single and double layer potentials for a IonicLiquid Green's function by collocation */ |
| 127 | + template <typename DerivativeTraits> |
| 128 | + Eigen::MatrixXd singleLayer(const IonicLiquid<DerivativeTraits, PurisimaIntegrator> & /* gf */, const std::vector<Element> & /* e */) const { |
| 129 | + throw std::runtime_error("Not implemented yet!"); |
| 130 | + } |
| 131 | + template <typename DerivativeTraits> |
| 132 | + Eigen::MatrixXd doubleLayer(const IonicLiquid<DerivativeTraits, PurisimaIntegrator> & /* gf */, const std::vector<Element> & /* e */) const { |
| 133 | + throw std::runtime_error("Not implemented yet!"); |
| 134 | + } |
| 135 | + /**@}*/ |
| 136 | + |
| 137 | + /**@{ Single and double layer potentials for an AnisotropicLiquid Green's function by collocation */ |
| 138 | + template <typename DerivativeTraits> |
| 139 | + Eigen::MatrixXd singleLayer(const AnisotropicLiquid<DerivativeTraits, PurisimaIntegrator> & /* gf */, const std::vector<Element> & /* e */) const { |
| 140 | + throw std::runtime_error("Not implemented yet!"); |
| 141 | + } |
| 142 | + template <typename DerivativeTraits> |
| 143 | + Eigen::MatrixXd doubleLayer(const AnisotropicLiquid<DerivativeTraits, PurisimaIntegrator> & /* gf */, const std::vector<Element> & /* e */) const { |
| 144 | + throw std::runtime_error("Not implemented yet!"); |
| 145 | + } |
| 146 | + /**@}*/ |
| 147 | + |
| 148 | + /**@{ Single and double layer potentials for a SphericalDiffuse Green's function by collocation */ |
| 149 | + /*! \tparam ProfilePolicy the permittivity profile for the diffuse interface |
| 150 | + * \param[in] gf Green's function |
| 151 | + * \param[in] e list of finite elements |
| 152 | + */ |
| 153 | + template <typename ProfilePolicy> |
| 154 | + Eigen::MatrixXd singleLayer(const SphericalDiffuse<PurisimaIntegrator, ProfilePolicy> & gf, const std::vector<Element> & e) const { |
| 155 | + // The singular part is "integrated" as usual, while the nonsingular part is evaluated in full |
| 156 | + size_t mat_size = e.size(); |
| 157 | + Eigen::MatrixXd S = Eigen::MatrixXd::Zero(mat_size, mat_size); |
| 158 | + for (size_t i = 0; i < mat_size; ++i) { |
| 159 | + // Fill diagonal |
| 160 | + // Diagonal of S inside the cavity |
| 161 | + double Sii_I = factor_ * std::sqrt(4 * M_PI / e[i].area()); |
| 162 | + // "Diagonal" of Coulomb singularity separation coefficient |
| 163 | + double coulomb_coeff = gf.coefficientCoulomb(e[i].center(), e[i].center()); |
| 164 | + // "Diagonal" of the image Green's function |
| 165 | + double image = gf.imagePotential(e[i].center(), e[i].center()); |
| 166 | + S(i, i) = Sii_I / coulomb_coeff + image; |
| 167 | + Eigen::Vector3d source = e[i].center(); |
| 168 | + for (size_t j = 0; j < mat_size; ++j) { |
| 169 | + // Fill off-diagonal |
| 170 | + Eigen::Vector3d probe = e[j].center(); |
| 171 | + if (i != j) S(i, j) = gf.kernelS(source, probe); |
| 172 | + } |
| 173 | + } |
| 174 | + return S; |
| 175 | + } |
| 176 | + /*! \tparam ProfilePolicy the permittivity profile for the diffuse interface |
| 177 | + * \param[in] gf Green's function |
| 178 | + * \param[in] e list of finite elements |
| 179 | + */ |
| 180 | + template <typename ProfilePolicy> |
| 181 | + Eigen::MatrixXd doubleLayer(const SphericalDiffuse<PurisimaIntegrator, ProfilePolicy> & gf, const std::vector<Element> & e) const { |
| 182 | + // The singular part is "integrated" as usual, while the nonsingular part is evaluated in full |
| 183 | + size_t mat_size = e.size(); |
| 184 | + Eigen::MatrixXd D = Eigen::MatrixXd::Zero(mat_size, mat_size); |
| 185 | + for (size_t i = 0; i < mat_size; ++i) { |
| 186 | + // Fill diagonal |
| 187 | + double area = e[i].area(); |
| 188 | + double radius = e[i].sphere().radius(); |
| 189 | + // Diagonal of S inside the cavity |
| 190 | + double Sii_I = factor_ * std::sqrt(4 * M_PI / area); |
| 191 | + // Diagonal of D inside the cavity |
| 192 | + double Dii_I = -factor_ * std::sqrt(M_PI/ area) * (1.0 / radius); |
| 193 | + // "Diagonal" of Coulomb singularity separation coefficient |
| 194 | + double coulomb_coeff = gf.coefficientCoulomb(e[i].center(), e[i].center()); |
| 195 | + // "Diagonal" of the directional derivative of the Coulomb singularity separation coefficient |
| 196 | + double coeff_grad = gf.coefficientCoulombDerivative(e[i].normal(), e[i].center(), e[i].center()) / std::pow(coulomb_coeff, 2); |
| 197 | + // "Diagonal" of the directional derivative of the image Green's function |
| 198 | + double image_grad = gf.imagePotentialDerivative(e[i].normal(), e[i].center(), e[i].center()); |
| 199 | + |
| 200 | + double eps_r2 = 0.0; |
| 201 | + std::tie(eps_r2, std::ignore) = gf.epsilon(e[i].center()); |
| 202 | + |
| 203 | + D(i, i) = eps_r2 * (Dii_I / coulomb_coeff - Sii_I * coeff_grad + image_grad); |
| 204 | + Eigen::Vector3d source = e[i].center(); |
| 205 | + for (size_t j = 0; j < mat_size; ++j) { |
| 206 | + // Fill off-diagonal |
| 207 | + Eigen::Vector3d probe = e[j].center(); |
| 208 | + Eigen::Vector3d probeNormal = e[j].normal(); |
| 209 | + probeNormal.normalize(); |
| 210 | + if (i != j) D(i, j) = gf.kernelD(probeNormal, source, probe); |
| 211 | + } |
| 212 | + } |
| 213 | + return D; |
| 214 | + } |
| 215 | + /**@}*/ |
| 216 | + |
| 217 | + /// Scaling factor for the collocation formulas |
| 218 | + double factor_; |
| 219 | +}; |
| 220 | + |
| 221 | +#endif // PURISIMAINTEGRATOR_HPP |
0 commit comments