diff --git a/docs/source-pytorch/api_references.rst b/docs/source-pytorch/api_references.rst index dcdf38d1b2919..497ac6d69f306 100644 --- a/docs/source-pytorch/api_references.rst +++ b/docs/source-pytorch/api_references.rst @@ -81,6 +81,8 @@ core ~optimizer.LightningOptimizer +.. _loggers-api-references: + loggers ------- diff --git a/docs/source-pytorch/common/remote_fs.rst b/docs/source-pytorch/common/remote_fs.rst index 199cba4ea2bf3..1b842ca610077 100644 --- a/docs/source-pytorch/common/remote_fs.rst +++ b/docs/source-pytorch/common/remote_fs.rst @@ -17,7 +17,8 @@ Working with different filesystems can be accomplished by appending a protocol l trainer = Trainer(default_root_dir="s3://my_bucket/data/") trainer.fit(model) -You could pass custom paths to loggers for logging data. + +For logging, remote filesystem support depends on the particular logger integration being used. Consult :ref:`the documentation of the individual logger ` for more details. .. code-block:: python diff --git a/src/lightning/pytorch/loggers/csv_logs.py b/src/lightning/pytorch/loggers/csv_logs.py index 5de0e27247faf..ee9267607d2c7 100644 --- a/src/lightning/pytorch/loggers/csv_logs.py +++ b/src/lightning/pytorch/loggers/csv_logs.py @@ -42,6 +42,8 @@ class ExperimentWriter(_FabricExperimentWriter): Currently, supports to log hyperparameters and metrics in YAML and CSV format, respectively. + This logger supports logging to remote filesystems via ``fsspec``. Make sure you have it installed. + Args: log_dir: Directory for the experiment logs """ diff --git a/src/lightning/pytorch/loggers/tensorboard.py b/src/lightning/pytorch/loggers/tensorboard.py index bcced33e5b9c3..4c033a2bc1a90 100644 --- a/src/lightning/pytorch/loggers/tensorboard.py +++ b/src/lightning/pytorch/loggers/tensorboard.py @@ -46,12 +46,15 @@ class TensorBoardLogger(Logger, FabricTensorBoardLogger): r""" - Log to local file system in `TensorBoard `_ format. + Log to local or remote file system in `TensorBoard `_ format. Implemented using :class:`~tensorboardX.SummaryWriter`. Logs are saved to ``os.path.join(save_dir, name, version)``. This is the default logger in Lightning, it comes preinstalled. + This logger supports logging to remote filesystems via ``fsspec``. Make sure you have it installed + and you don't have tensorflow (otherwise it will use tf.io.gfile instead of fsspec). + Example: .. testcode::