-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Closed
Labels
bugSomething isn't workingSomething isn't workinghelp wantedOpen to be worked onOpen to be worked onpriority: 0High priority taskHigh priority task
Description
🐛 Bug
In the latest version of lightning, you do not seem to be able to have multiple callbacks which can stop.
Please reproduce using the BoringModel
- If you have mulitple callbacks which can do early stopping, only the last one can be active.
- Create a callback with early stopping,
MyStoppingCallback(). Add it, thenEarlyStoppingCallback()to the callbacks argument of the trainer, e.g.callbacks = [MyStoppingCallback(), EarlyStoppingCallback('val_loss')]
- The callback is triggered and calculates that it needs to stop, but it ontinues training
- On the other hand, if you change the order (e.g.
callbacks = [EarlyStoppingCallback('val_loss'),MyStoppingCallback()]it will be stop withMyStoppingCallbackbut probably doesn't triggle the EarlyStoppingCallback.
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------
# --------------------------------------------
# --------------------------------------------
# USE THIS MODEL TO REPRODUCE A BUG YOU REPORT
# --------------------------------------------
# --------------------------------------------
# --------------------------------------------
import os
import torch
from torch.utils.data import Dataset
from pl_examples import cli_lightning_logo
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.callbacks import Callback
class RandomDataset(Dataset):
"""
>>> RandomDataset(size=10, length=20) # doctest: +ELLIPSIS
<...bug_report_model.RandomDataset object at ...>
"""
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class BoringModel(LightningModule):
"""
>>> BoringModel() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
BoringModel(
(layer): Linear(...)
)
"""
def __init__(self):
"""
Testing PL Module
Use as follows:
- subclass
- modify the behavior for what you want
class TestModel(BaseTestModel):
def training_step(...):
# do your own thing
or:
model = BaseTestModel()
model.training_epoch_end = None
"""
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def loss(self, batch, prediction):
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction))
def step(self, x):
x = self.layer(x)
out = torch.nn.functional.mse_loss(x, torch.ones_like(x))
return out
def training_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_step_end(self, training_step_outputs):
return training_step_outputs
def training_epoch_end(self, outputs) -> None:
torch.stack([x["loss"] for x in outputs]).mean()
def validation_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log('val_loss', loss)
return {"x": loss}
def validation_epoch_end(self, outputs) -> None:
torch.stack([x['x'] for x in outputs]).mean()
def test_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"y": loss}
def test_epoch_end(self, outputs) -> None:
torch.stack([x["y"] for x in outputs]).mean()
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
# NOTE: If you are using a cmd line to run your script,
# provide the cmd line as below.
# opt = "--max_epochs 1 --limit_train_batches 1".split(" ")
# parser = ArgumentParser()
# args = parser.parse_args(opt)
class EarlyStoppingExample(Callback):
def on_validation_end(self, trainer, pl_module):
if trainer.current_epoch > 5:
should_stop = True
else:
should_stop = False
if bool(should_stop):
print("\nSTOPPING!!!!!!!!!!!!!!!!!!!!\n")
self.stopped_epoch = trainer.current_epoch
trainer.should_stop = True
# stop every ddp process if any world process decides to stop
should_stop = trainer.training_type_plugin.reduce_early_stopping_decision(should_stop)
trainer.should_stop = should_stop
def test_run():
class TestModel(BoringModel):
def on_train_epoch_start(self) -> None:
pass
# fake data
train_data = torch.utils.data.DataLoader(RandomDataset(32, 64))
val_data = torch.utils.data.DataLoader(RandomDataset(32, 64))
test_data = torch.utils.data.DataLoader(RandomDataset(32, 64))
# model
early_stopping = EarlyStopping('val_loss', patience=50)
model = TestModel()
trainer = Trainer(
default_root_dir=os.getcwd(),
limit_train_batches=1,
limit_val_batches=1,
max_epochs=100,
weights_summary=None,
callbacks=[
EarlyStoppingExample(),
early_stopping,
]
)
trainer.fit(model, train_data, val_data)
trainer.test(test_dataloaders=test_data)
if __name__ == '__main__':
#cli_lightning_logo()
test_run()To Reproduce
Use following BoringModel and post here
Expected behavior
- PyTorch Version (e.g., 1.0): 1.7
- OS (e.g., Linux): Windows
- How you installed PyTorch (
conda,pip, source): pip - Build command you used (if compiling from source):
- Python version: 3.7.4
- CUDA/cuDNN version:
- GPU models and configuration:
- Any other relevant information:
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workinghelp wantedOpen to be worked onOpen to be worked onpriority: 0High priority taskHigh priority task