@@ -580,9 +580,9 @@ Below are the possible configurations we support.
580580
581581Implement Your Own Distributed (DDP) training
582582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
583- If you need your own way to init PyTorch DDP you can override :meth: `pytorch_lightning.plugins.legacy.ddp_plugin .DDPPlugin.init_ddp_connection `.
583+ If you need your own way to init PyTorch DDP you can override :meth: `pytorch_lightning.plugins.training_type.ddp .DDPPlugin.init_ddp_connection `.
584584
585- If you also need to use your own DDP implementation, override :meth: `pytorch_lightning.plugins.legacy.ddp_plugin .DDPPlugin.configure_ddp `.
585+ If you also need to use your own DDP implementation, override :meth: `pytorch_lightning.plugins.training_type.ddp .DDPPlugin.configure_ddp `.
586586
587587
588588----------
@@ -692,7 +692,7 @@ This should be kept within the ``sequential_module`` variable within your ``Ligh
692692
693693.. code-block :: python
694694
695- from pytorch_lightning.plugins.legacy.ddp_sequential_plugin import DDPSequentialPlugin
695+ from pytorch_lightning.plugins.training_type.rpc_sequential import RPCSequentialPlugin
696696 from pytorch_lightning import LightningModule
697697
698698 class MyModel (LightningModule ):
@@ -702,7 +702,7 @@ This should be kept within the ``sequential_module`` variable within your ``Ligh
702702
703703 # Split my module across 4 gpus, one layer each
704704 model = MyModel()
705- plugin = DDPSequentialPlugin (balance = [1 , 1 , 1 , 1 ])
705+ plugin = RPCSequentialPlugin (balance = [1 , 1 , 1 , 1 ])
706706 trainer = Trainer(accelerator = ' ddp' , gpus = 4 , plugins = [plugin])
707707 trainer.fit(model)
708708
0 commit comments