|
| 1 | +{ |
| 2 | + "nbformat": 4, |
| 3 | + "nbformat_minor": 0, |
| 4 | + "metadata": { |
| 5 | + "accelerator": "GPU", |
| 6 | + "colab": { |
| 7 | + "name": "06_cifar10_baseline.ipynb", |
| 8 | + "provenance": [], |
| 9 | + "collapsed_sections": [] |
| 10 | + }, |
| 11 | + "kernelspec": { |
| 12 | + "display_name": "Python 3", |
| 13 | + "name": "python3" |
| 14 | + } |
| 15 | + }, |
| 16 | + "cells": [ |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": { |
| 20 | + "id": "qMDj0BYNECU8" |
| 21 | + }, |
| 22 | + "source": [ |
| 23 | + "<a href=\"https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/06-cifar10-pytorch-lightning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": { |
| 29 | + "id": "ECu0zDh8UXU8" |
| 30 | + }, |
| 31 | + "source": [ |
| 32 | + "# PyTorch Lightning CIFAR10 ~94% Baseline Tutorial ⚡\n", |
| 33 | + "\n", |
| 34 | + "Train a Resnet to 94% accuracy on Cifar10!\n", |
| 35 | + "\n", |
| 36 | + "Main takeaways:\n", |
| 37 | + "1. Experiment with different Learning Rate schedules and frequencies in the configure_optimizers method in pl.LightningModule\n", |
| 38 | + "2. Use an existing Resnet architecture with modifications directly with Lightning\n", |
| 39 | + "\n", |
| 40 | + "---\n", |
| 41 | + "\n", |
| 42 | + " - Give us a ⭐ [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", |
| 43 | + " - Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)\n", |
| 44 | + " - Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "markdown", |
| 49 | + "metadata": { |
| 50 | + "id": "HYpMlx7apuHq" |
| 51 | + }, |
| 52 | + "source": [ |
| 53 | + "### Setup\n", |
| 54 | + "Lightning is easy to install. Simply `pip install pytorch-lightning`.\n", |
| 55 | + "Also check out [bolts](https://github.com/PyTorchLightning/pytorch-lightning-bolts/) for pre-existing data modules and models." |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "metadata": { |
| 61 | + "id": "ziAQCrE-TYWG" |
| 62 | + }, |
| 63 | + "source": [ |
| 64 | + "! pip install pytorch-lightning pytorch-lightning-bolts -qU" |
| 65 | + ], |
| 66 | + "execution_count": null, |
| 67 | + "outputs": [] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "metadata": { |
| 72 | + "id": "L-W_Gq2FORoU" |
| 73 | + }, |
| 74 | + "source": [ |
| 75 | + "# Run this if you intend to use TPUs\n", |
| 76 | + "# !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py\n", |
| 77 | + "# !python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev" |
| 78 | + ], |
| 79 | + "execution_count": null, |
| 80 | + "outputs": [] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "metadata": { |
| 85 | + "id": "wjov-2N_TgeS" |
| 86 | + }, |
| 87 | + "source": [ |
| 88 | + "import torch\n", |
| 89 | + "import torch.nn as nn\n", |
| 90 | + "import torch.nn.functional as F\n", |
| 91 | + "from torch.optim.lr_scheduler import OneCycleLR\n", |
| 92 | + "from torch.optim.swa_utils import AveragedModel, update_bn\n", |
| 93 | + "import torchvision\n", |
| 94 | + "\n", |
| 95 | + "import pytorch_lightning as pl\n", |
| 96 | + "from pytorch_lightning.callbacks import LearningRateMonitor\n", |
| 97 | + "from pytorch_lightning.metrics.functional import accuracy\n", |
| 98 | + "from pl_bolts.datamodules import CIFAR10DataModule\n", |
| 99 | + "from pl_bolts.transforms.dataset_normalizations import cifar10_normalization" |
| 100 | + ], |
| 101 | + "execution_count": null, |
| 102 | + "outputs": [] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "metadata": { |
| 107 | + "id": "54JMU1N-0y0g" |
| 108 | + }, |
| 109 | + "source": [ |
| 110 | + "pl.seed_everything(7);" |
| 111 | + ], |
| 112 | + "execution_count": null, |
| 113 | + "outputs": [] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": { |
| 118 | + "id": "FA90qwFcqIXR" |
| 119 | + }, |
| 120 | + "source": [ |
| 121 | + "### CIFAR10 Data Module\n", |
| 122 | + "\n", |
| 123 | + "Import the existing data module from `bolts` and modify the train and test transforms." |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "metadata": { |
| 129 | + "id": "S9e-W8CSa8nH" |
| 130 | + }, |
| 131 | + "source": [ |
| 132 | + "batch_size = 32\n", |
| 133 | + "\n", |
| 134 | + "train_transforms = torchvision.transforms.Compose([\n", |
| 135 | + " torchvision.transforms.RandomCrop(32, padding=4),\n", |
| 136 | + " torchvision.transforms.RandomHorizontalFlip(),\n", |
| 137 | + " torchvision.transforms.ToTensor(),\n", |
| 138 | + " cifar10_normalization(),\n", |
| 139 | + "])\n", |
| 140 | + "\n", |
| 141 | + "test_transforms = torchvision.transforms.Compose([\n", |
| 142 | + " torchvision.transforms.ToTensor(),\n", |
| 143 | + " cifar10_normalization(),\n", |
| 144 | + "])\n", |
| 145 | + "\n", |
| 146 | + "cifar10_dm = CIFAR10DataModule(\n", |
| 147 | + " batch_size=batch_size,\n", |
| 148 | + " train_transforms=train_transforms,\n", |
| 149 | + " test_transforms=test_transforms,\n", |
| 150 | + " val_transforms=test_transforms,\n", |
| 151 | + ")" |
| 152 | + ], |
| 153 | + "execution_count": null, |
| 154 | + "outputs": [] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "metadata": { |
| 159 | + "id": "SfCsutp3qUMc" |
| 160 | + }, |
| 161 | + "source": [ |
| 162 | + "### Resnet\n", |
| 163 | + "Modify the pre-existing Resnet architecture from TorchVision. The pre-existing architecture is based on ImageNet images (224x224) as input. So we need to modify it for CIFAR10 images (32x32)." |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "metadata": { |
| 169 | + "id": "GNSeJgwvhHp-" |
| 170 | + }, |
| 171 | + "source": [ |
| 172 | + "def create_model():\n", |
| 173 | + " model = torchvision.models.resnet18(pretrained=False, num_classes=10)\n", |
| 174 | + " model.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 175 | + " model.maxpool = nn.Identity()\n", |
| 176 | + " return model" |
| 177 | + ], |
| 178 | + "execution_count": null, |
| 179 | + "outputs": [] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": { |
| 184 | + "id": "HUCj5TKsqty1" |
| 185 | + }, |
| 186 | + "source": [ |
| 187 | + "### Lightning Module\n", |
| 188 | + "Check out the [`configure_optimizers`](https://pytorch-lightning.readthedocs.io/en/stable/lightning_module.html#configure-optimizers) method to use custom Learning Rate schedulers. The OneCycleLR with SGD will get you to around 92-93% accuracy in 20-30 epochs and 93-94% accuracy in 40-50 epochs. Feel free to experiment with different LR schedules from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "metadata": { |
| 194 | + "id": "03OMrBa5iGtT" |
| 195 | + }, |
| 196 | + "source": [ |
| 197 | + "class LitResnet(pl.LightningModule):\n", |
| 198 | + " def __init__(self, lr=0.05):\n", |
| 199 | + " super().__init__()\n", |
| 200 | + "\n", |
| 201 | + " self.save_hyperparameters()\n", |
| 202 | + " self.model = create_model()\n", |
| 203 | + "\n", |
| 204 | + " def forward(self, x):\n", |
| 205 | + " out = self.model(x)\n", |
| 206 | + " return F.log_softmax(out, dim=1)\n", |
| 207 | + "\n", |
| 208 | + " def training_step(self, batch, batch_idx):\n", |
| 209 | + " x, y = batch\n", |
| 210 | + " logits = F.log_softmax(self.model(x), dim=1)\n", |
| 211 | + " loss = F.nll_loss(logits, y)\n", |
| 212 | + " self.log('train_loss', loss)\n", |
| 213 | + " return loss\n", |
| 214 | + "\n", |
| 215 | + " def evaluate(self, batch, stage=None):\n", |
| 216 | + " x, y = batch\n", |
| 217 | + " logits = self(x)\n", |
| 218 | + " loss = F.nll_loss(logits, y)\n", |
| 219 | + " preds = torch.argmax(logits, dim=1)\n", |
| 220 | + " acc = accuracy(preds, y)\n", |
| 221 | + "\n", |
| 222 | + " if stage:\n", |
| 223 | + " self.log(f'{stage}_loss', loss, prog_bar=True)\n", |
| 224 | + " self.log(f'{stage}_acc', acc, prog_bar=True)\n", |
| 225 | + "\n", |
| 226 | + " def validation_step(self, batch, batch_idx):\n", |
| 227 | + " self.evaluate(batch, 'val')\n", |
| 228 | + "\n", |
| 229 | + " def test_step(self, batch, batch_idx):\n", |
| 230 | + " self.evaluate(batch, 'test')\n", |
| 231 | + "\n", |
| 232 | + " def configure_optimizers(self):\n", |
| 233 | + " optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", |
| 234 | + " steps_per_epoch = 45000 // batch_size\n", |
| 235 | + " scheduler_dict = {\n", |
| 236 | + " 'scheduler': OneCycleLR(optimizer, 0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),\n", |
| 237 | + " 'interval': 'step',\n", |
| 238 | + " }\n", |
| 239 | + " return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}" |
| 240 | + ], |
| 241 | + "execution_count": null, |
| 242 | + "outputs": [] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "metadata": { |
| 247 | + "id": "3FFPgpAFi9KU" |
| 248 | + }, |
| 249 | + "source": [ |
| 250 | + "model = LitResnet(lr=0.05)\n", |
| 251 | + "model.datamodule = cifar10_dm\n", |
| 252 | + "\n", |
| 253 | + "trainer = pl.Trainer(\n", |
| 254 | + " progress_bar_refresh_rate=20,\n", |
| 255 | + " max_epochs=40,\n", |
| 256 | + " gpus=1,\n", |
| 257 | + " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='resnet'),\n", |
| 258 | + " callbacks=[LearningRateMonitor(logging_interval='step')],\n", |
| 259 | + ")\n", |
| 260 | + "\n", |
| 261 | + "trainer.fit(model, cifar10_dm)\n", |
| 262 | + "trainer.test(model, datamodule=cifar10_dm);" |
| 263 | + ], |
| 264 | + "execution_count": null, |
| 265 | + "outputs": [] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "markdown", |
| 269 | + "metadata": { |
| 270 | + "id": "lWL_WpeVIXWQ" |
| 271 | + }, |
| 272 | + "source": [ |
| 273 | + "### Bonus: Use [Stochastic Weight Averaging](https://arxiv.org/abs/1803.05407) to get a boost on performance\n", |
| 274 | + "\n", |
| 275 | + "Use SWA from torch.optim to get a quick performance boost. Also shows a couple of cool features from Lightning:\n", |
| 276 | + "- Use `training_epoch_end` to run code after the end of every epoch\n", |
| 277 | + "- Use a pretrained model directly with this wrapper for SWA" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "metadata": { |
| 283 | + "id": "bsSwqKv0t9uY" |
| 284 | + }, |
| 285 | + "source": [ |
| 286 | + "class SWAResnet(LitResnet):\n", |
| 287 | + " def __init__(self, trained_model, lr=0.01):\n", |
| 288 | + " super().__init__()\n", |
| 289 | + "\n", |
| 290 | + " self.save_hyperparameters('lr')\n", |
| 291 | + " self.model = trained_model\n", |
| 292 | + " self.swa_model = AveragedModel(self.model)\n", |
| 293 | + "\n", |
| 294 | + " def forward(self, x):\n", |
| 295 | + " out = self.swa_model(x)\n", |
| 296 | + " return F.log_softmax(out, dim=1)\n", |
| 297 | + "\n", |
| 298 | + " def training_epoch_end(self, training_step_outputs):\n", |
| 299 | + " self.swa_model.update_parameters(self.model)\n", |
| 300 | + "\n", |
| 301 | + " def validation_step(self, batch, batch_idx, stage=None):\n", |
| 302 | + " x, y = batch\n", |
| 303 | + " logits = F.log_softmax(self.model(x), dim=1)\n", |
| 304 | + " loss = F.nll_loss(logits, y)\n", |
| 305 | + " preds = torch.argmax(logits, dim=1)\n", |
| 306 | + " acc = accuracy(preds, y)\n", |
| 307 | + "\n", |
| 308 | + " self.log(f'val_loss', loss, prog_bar=True)\n", |
| 309 | + " self.log(f'val_acc', acc, prog_bar=True)\n", |
| 310 | + "\n", |
| 311 | + " def configure_optimizers(self):\n", |
| 312 | + " optimizer = torch.optim.SGD(self.model.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", |
| 313 | + " return optimizer\n", |
| 314 | + "\n", |
| 315 | + " def on_train_end(self):\n", |
| 316 | + " update_bn(self.datamodule.train_dataloader(), self.swa_model, device=self.device)" |
| 317 | + ], |
| 318 | + "execution_count": null, |
| 319 | + "outputs": [] |
| 320 | + }, |
| 321 | + { |
| 322 | + "cell_type": "code", |
| 323 | + "metadata": { |
| 324 | + "id": "cA6ZG7C74rjL" |
| 325 | + }, |
| 326 | + "source": [ |
| 327 | + "swa_model = SWAResnet(model.model, lr=0.01)\n", |
| 328 | + "swa_model.datamodule = cifar10_dm\n", |
| 329 | + "\n", |
| 330 | + "swa_trainer = pl.Trainer(\n", |
| 331 | + " progress_bar_refresh_rate=20,\n", |
| 332 | + " max_epochs=20,\n", |
| 333 | + " gpus=1,\n", |
| 334 | + " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='swa_resnet'),\n", |
| 335 | + ")\n", |
| 336 | + "\n", |
| 337 | + "swa_trainer.fit(swa_model, cifar10_dm)\n", |
| 338 | + "swa_trainer.test(swa_model, datamodule=cifar10_dm);" |
| 339 | + ], |
| 340 | + "execution_count": null, |
| 341 | + "outputs": [] |
| 342 | + }, |
| 343 | + { |
| 344 | + "cell_type": "code", |
| 345 | + "metadata": { |
| 346 | + "id": "RRHMfGiDpZ2M" |
| 347 | + }, |
| 348 | + "source": [ |
| 349 | + "# Start tensorboard.\n", |
| 350 | + "%reload_ext tensorboard\n", |
| 351 | + "%tensorboard --logdir lightning_logs/" |
| 352 | + ], |
| 353 | + "execution_count": null, |
| 354 | + "outputs": [] |
| 355 | + }, |
| 356 | + { |
| 357 | + "cell_type": "markdown", |
| 358 | + "metadata": { |
| 359 | + "id": "RltpFGS-s0M1" |
| 360 | + }, |
| 361 | + "source": [ |
| 362 | + "<code style=\"color:#792ee5;\">\n", |
| 363 | + " <h1> <strong> Congratulations - Time to Join the Community! </strong> </h1>\n", |
| 364 | + "</code>\n", |
| 365 | + "\n", |
| 366 | + "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!\n", |
| 367 | + "\n", |
| 368 | + "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", |
| 369 | + "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we're building.\n", |
| 370 | + "\n", |
| 371 | + "* Please, star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning)\n", |
| 372 | + "\n", |
| 373 | + "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)!\n", |
| 374 | + "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in `#general` channel\n", |
| 375 | + "\n", |
| 376 | + "### Interested by SOTA AI models ! Check out [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", |
| 377 | + "Bolts has a collection of state-of-the-art models, all implemented in [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and can be easily integrated within your own projects.\n", |
| 378 | + "\n", |
| 379 | + "* Please, star [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", |
| 380 | + "\n", |
| 381 | + "### Contributions !\n", |
| 382 | + "The best way to contribute to our community is to become a code contributor! At any time you can go to [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts) GitHub Issues page and filter for \"good first issue\". \n", |
| 383 | + "\n", |
| 384 | + "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", |
| 385 | + "* [Bolt good first issue](https://github.com/PyTorchLightning/pytorch-lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", |
| 386 | + "* You can also contribute your own notebooks with useful examples !\n", |
| 387 | + "\n", |
| 388 | + "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", |
| 389 | + "\n", |
| 390 | + "<img src=\"https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/logos/lightning_logo-name.png?raw=true\" width=\"800\" height=\"200\" />" |
| 391 | + ] |
| 392 | + } |
| 393 | + ] |
| 394 | +} |
0 commit comments