|
| 1 | +# Copyright The PyTorch Lightning team. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import os |
| 15 | + |
| 16 | +import fsspec |
| 17 | +import pytest |
| 18 | + |
| 19 | +from pytorch_lightning import Trainer |
| 20 | +from pytorch_lightning.callbacks import ModelCheckpoint |
| 21 | +from pytorch_lightning.loggers import TensorBoardLogger |
| 22 | +from tests.helpers import BoringModel |
| 23 | + |
| 24 | +GCS_BUCKET_PATH = os.getenv("GCS_BUCKET_PATH", None) |
| 25 | +_GCS_BUCKET_PATH_AVAILABLE = GCS_BUCKET_PATH is not None |
| 26 | + |
| 27 | +gcs_fs = fsspec.filesystem("gs") if _GCS_BUCKET_PATH_AVAILABLE else None |
| 28 | + |
| 29 | + |
| 30 | +def gcs_path_join(dir_path): |
| 31 | + return GCS_BUCKET_PATH + str(dir_path) |
| 32 | + |
| 33 | + |
| 34 | +def gcs_rm_dir(dir_path): |
| 35 | + gcs_fs.rm(dir_path, recursive=True) |
| 36 | + return True |
| 37 | + |
| 38 | + |
| 39 | +@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path") |
| 40 | +def test_gcs_model_checkpoint_contents(tmpdir): |
| 41 | + dir_path = gcs_path_join(tmpdir) |
| 42 | + |
| 43 | + model = BoringModel() |
| 44 | + checkpoint_callback = ModelCheckpoint(dirpath=dir_path, save_top_k=-1, save_last=True) |
| 45 | + epochs = 2 |
| 46 | + |
| 47 | + trainer = Trainer( |
| 48 | + default_root_dir=dir_path, |
| 49 | + callbacks=[checkpoint_callback], |
| 50 | + limit_train_batches=10, |
| 51 | + limit_val_batches=10, |
| 52 | + max_epochs=2, |
| 53 | + logger=False, |
| 54 | + ) |
| 55 | + |
| 56 | + trainer.fit(model) |
| 57 | + |
| 58 | + assert checkpoint_callback.best_model_path == os.path.join(dir_path, 'epoch=1-step=19.ckpt') |
| 59 | + assert checkpoint_callback.last_model_path == os.path.join(dir_path, 'last.ckpt') |
| 60 | + |
| 61 | + expected = [f'epoch={i}-step={j}.ckpt' for i, j in zip(range(epochs), [9, 19])] |
| 62 | + expected.append('last.ckpt') |
| 63 | + |
| 64 | + gcs_ckpt_paths = [os.path.basename(path) for path in gcs_fs.listdir(dir_path, detail=False)] |
| 65 | + assert gcs_ckpt_paths == expected |
| 66 | + |
| 67 | + assert gcs_rm_dir(dir_path) |
| 68 | + |
| 69 | + |
| 70 | +@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path") |
| 71 | +def test_gcs_logging(tmpdir): |
| 72 | + dir_path = gcs_path_join(tmpdir) |
| 73 | + |
| 74 | + name = "tb_versioning" |
| 75 | + log_dir = os.path.join(dir_path, name) |
| 76 | + gcs_fs.mkdir(log_dir) |
| 77 | + expected_version = "101" |
| 78 | + |
| 79 | + logger = TensorBoardLogger(save_dir=dir_path, name=name, version=expected_version) |
| 80 | + logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) |
| 81 | + |
| 82 | + assert logger.version == expected_version |
| 83 | + |
| 84 | + gcs_paths = [os.path.basename(path) for path in gcs_fs.listdir(log_dir, detail=False)] |
| 85 | + gcs_paths = list(filter(lambda x: len(x) > 0, gcs_paths)) |
| 86 | + |
| 87 | + assert gcs_paths == [expected_version] |
| 88 | + assert gcs_fs.listdir(os.path.join(log_dir, expected_version), detail=False) |
| 89 | + |
| 90 | + assert gcs_rm_dir(dir_path) |
| 91 | + |
| 92 | + |
| 93 | +@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path") |
| 94 | +def test_gcs_save_hparams_to_yaml_file(tmpdir): |
| 95 | + dir_path = gcs_path_join(tmpdir) |
| 96 | + |
| 97 | + model = BoringModel() |
| 98 | + logger = TensorBoardLogger(save_dir=dir_path, default_hp_metric=False) |
| 99 | + trainer = Trainer(max_steps=1, default_root_dir=dir_path, logger=logger) |
| 100 | + assert trainer.log_dir == trainer.logger.log_dir |
| 101 | + trainer.fit(model) |
| 102 | + |
| 103 | + hparams_file = "hparams.yaml" |
| 104 | + assert gcs_fs.isfile(os.path.join(trainer.log_dir, hparams_file)) |
| 105 | + |
| 106 | + assert gcs_rm_dir(dir_path) |
0 commit comments