@@ -159,7 +159,7 @@ def __init__(
159159 stochastic_weight_avg : bool = False ,
160160 ):
161161 r"""
162- Customize every aspect of training via flags
162+ Customize every aspect of training via flags.
163163
164164 Args:
165165
@@ -168,7 +168,7 @@ def __init__(
168168
169169 accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.
170170
171- amp_backend: The mixed precision backend to use ("native" or "apex")
171+ amp_backend: The mixed precision backend to use ("native" or "apex").
172172
173173 amp_level: The optimization level to use (O1, O2, etc...).
174174
@@ -207,34 +207,36 @@ def __init__(
207207 devices: Will be mapped to either `gpus`, `tpu_cores`, `num_processes` or `ipus`,
208208 based on the accelerator type.
209209
210- distributed_backend: deprecated . Please use 'accelerator'
210+ distributed_backend: Deprecated . Please use 'accelerator'.
211211
212- fast_dev_run: runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
212+ fast_dev_run: Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
213213 of train, val and test to find any bugs (ie: a sort of unit test).
214214
215215 flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps).
216216
217- gpus: number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
217+ gpus: Number of GPUs to train on (int) or which GPUs to train on (list or str) applied per node
218218
219- gradient_clip_val: 0 means don't clip.
219+ gradient_clip_val: The value at which to clip gradients. Passing ``gradient_clip_val=0`` disables gradient
220+ clipping.
220221
221- gradient_clip_algorithm: 'value' means clip_by_value, 'norm' means clip_by_norm. Default: 'norm'
222+ gradient_clip_algorithm: The gradient clipping algorithm to use. Pass ``gradient_clip_algorithm="value"``
223+ for clip_by_value, and ``gradient_clip_algorithm="norm"`` for clip_by_norm.
222224
223- limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches)
225+ limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches).
224226
225- limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches)
227+ limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches).
226228
227- limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches)
229+ limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches).
228230
229- limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches)
231+ limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches).
230232
231233 logger: Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses
232234 the default ``TensorBoardLogger``. ``False`` will disable logging. If multiple loggers are
233235 provided and the `save_dir` property of that logger is not set, local files (checkpoints,
234236 profiler traces, etc.) are saved in ``default_root_dir`` rather than in the ``log_dir`` of any
235237 of the individual loggers.
236238
237- log_gpu_memory: None, 'min_max', 'all'. Might slow performance
239+ log_gpu_memory: None, 'min_max', 'all'. Might slow performance.
238240
239241 log_every_n_steps: How often to log within steps (defaults to every 50 steps).
240242
@@ -245,7 +247,7 @@ def __init__(
245247 Deprecated in v1.5.0 and will be removed in v1.7.0
246248 Please set ``prepare_data_per_node`` in LightningDataModule or LightningModule directly instead.
247249
248- process_position: orders the progress bar when running multiple models on same machine.
250+ process_position: Orders the progress bar when running multiple models on same machine.
249251
250252 .. deprecated:: v1.5
251253 ``process_position`` has been deprecated in v1.5 and will be removed in v1.7.
@@ -280,15 +282,14 @@ def __init__(
280282 :class:`datetime.timedelta`, or a dictionary with keys that will be passed to
281283 :class:`datetime.timedelta`.
282284
283- num_nodes: number of GPU nodes for distributed training.
285+ num_nodes: Number of GPU nodes for distributed training.
284286
285- num_processes: number of processes for distributed training with distributed_backend ="ddp_cpu"
287+ num_processes: Number of processes for distributed training with ``accelerator ="ddp_cpu"``.
286288
287289 num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine.
288290 Set it to `-1` to run all batches in all validation dataloaders.
289291
290292 reload_dataloaders_every_n_epochs: Set to a non-negative integer to reload dataloaders every n epochs.
291- Default: 0
292293
293294 reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch.
294295
@@ -336,7 +337,7 @@ def __init__(
336337 reload when reaching the minimum length of datasets.
337338
338339 stochastic_weight_avg: Whether to use `Stochastic Weight Averaging (SWA)
339- <https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/>_`
340+ <https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/>`_.
340341
341342 """
342343 super ().__init__ ()
0 commit comments