|
13 | 13 | # limitations under the License. |
14 | 14 | import os |
15 | 15 | from typing import Any, Dict, Optional, Union |
| 16 | +from unittest import mock |
16 | 17 | from unittest.mock import Mock |
17 | 18 |
|
| 19 | +import pytorch_lightning as pl |
18 | 20 | from pytorch_lightning import Callback, Trainer |
19 | 21 | from pytorch_lightning.loggers.base import LightningLoggerBase |
20 | 22 | from tests.helpers import BoringModel |
@@ -136,3 +138,68 @@ def on_train_start(self, trainer, pl_module): |
136 | 138 | callbacks=[LoggerCallsObserver()], |
137 | 139 | ) |
138 | 140 | trainer.fit(model) |
| 141 | + |
| 142 | + |
| 143 | +def test_logger_after_fit_predict_test_calls(tmpdir): |
| 144 | + """ |
| 145 | + Make sure logger outputs are finalized after fit, prediction, and test calls. |
| 146 | + """ |
| 147 | + |
| 148 | + class BufferLogger(LightningLoggerBase): |
| 149 | + def __init__(self): |
| 150 | + super().__init__() |
| 151 | + self.buffer = {} |
| 152 | + self.logs = {} |
| 153 | + |
| 154 | + def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: |
| 155 | + self.buffer.update(metrics) |
| 156 | + |
| 157 | + def finalize(self, status: str) -> None: |
| 158 | + self.logs.update(self.buffer) |
| 159 | + self.buffer = {} |
| 160 | + |
| 161 | + @property |
| 162 | + def experiment(self) -> Any: |
| 163 | + return None |
| 164 | + |
| 165 | + @property |
| 166 | + def version(self) -> Union[int, str]: |
| 167 | + return 1 |
| 168 | + |
| 169 | + @property |
| 170 | + def name(self) -> str: |
| 171 | + return "BufferLogger" |
| 172 | + |
| 173 | + def log_hyperparams(self, *args, **kwargs) -> None: |
| 174 | + return None |
| 175 | + |
| 176 | + class LoggerCallsObserver(Callback): |
| 177 | + def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 178 | + trainer.logger.log_metrics({"fit": 1}) |
| 179 | + |
| 180 | + def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 181 | + trainer.logger.log_metrics({"validate": 1}) |
| 182 | + |
| 183 | + def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 184 | + trainer.logger.log_metrics({"predict": 1}) |
| 185 | + |
| 186 | + def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 187 | + trainer.logger.log_metrics({"test": 1}) |
| 188 | + |
| 189 | + model = BoringModel() |
| 190 | + trainer = Trainer( |
| 191 | + default_root_dir=tmpdir, |
| 192 | + limit_train_batches=1, |
| 193 | + limit_val_batches=1, |
| 194 | + max_epochs=1, |
| 195 | + logger=BufferLogger(), |
| 196 | + callbacks=[LoggerCallsObserver()], |
| 197 | + ) |
| 198 | + |
| 199 | + assert not trainer.logger.logs |
| 200 | + trainer.fit(model) |
| 201 | + assert trainer.logger.logs == {"fit": 1, "validate": 1} |
| 202 | + trainer.test(model) |
| 203 | + assert trainer.logger.logs == {"fit": 1, "validate": 1, "test": 1} |
| 204 | + trainer.predict(model) |
| 205 | + assert trainer.logger.logs == {"fit": 1, "validate": 1, "test": 1, "predict": 1} |
0 commit comments