|
14 | 14 | from unittest.mock import Mock, patch |
15 | 15 |
|
16 | 16 | import pytest |
| 17 | +from torch import nn |
17 | 18 | from torch.optim import Adam, SGD |
18 | 19 |
|
19 | 20 | from pytorch_lightning import Trainer |
@@ -184,3 +185,228 @@ def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, clos |
184 | 185 | ) |
185 | 186 |
|
186 | 187 | trainer.fit(model) |
| 188 | + |
| 189 | + |
| 190 | +def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir): |
| 191 | + |
| 192 | + class TestModel(BoringModel): |
| 193 | + |
| 194 | + def training_step(self, batch, batch_idx, optimizer_idx=None): |
| 195 | + return super().training_step(batch, batch_idx) |
| 196 | + |
| 197 | + def __init__(self): |
| 198 | + super().__init__() |
| 199 | + self.layer_1 = nn.Sequential( |
| 200 | + nn.Linear(32, 32), |
| 201 | + nn.ReLU(), |
| 202 | + nn.Linear(32, 32), |
| 203 | + nn.ReLU(), |
| 204 | + nn.Linear(32, 32), |
| 205 | + ) |
| 206 | + |
| 207 | + self.layer_2 = nn.Sequential( |
| 208 | + nn.ReLU(), |
| 209 | + nn.Linear(32, 32), |
| 210 | + nn.ReLU(), |
| 211 | + nn.Linear(32, 32), |
| 212 | + nn.ReLU(), |
| 213 | + nn.Linear(32, 2) |
| 214 | + ) |
| 215 | + |
| 216 | + # set some weights to False to check untoggle works as expected. |
| 217 | + self.layer_1[2].weight.requires_grad = False |
| 218 | + self.layer_1[4].weight.requires_grad = False |
| 219 | + |
| 220 | + self.layer_2[1].weight.requires_grad = False |
| 221 | + self.layer_2[3].weight.requires_grad = False |
| 222 | + |
| 223 | + def configure_optimizers(self): |
| 224 | + optimizer = SGD(self.layer_1.parameters(), lr=0.1) |
| 225 | + optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1) |
| 226 | + return [optimizer, optimizer_2] |
| 227 | + |
| 228 | + def optimizer_step( |
| 229 | + self, |
| 230 | + current_epoch, |
| 231 | + batch_nb, |
| 232 | + optimizer, |
| 233 | + optimizer_idx, |
| 234 | + closure, |
| 235 | + on_tpu=False, |
| 236 | + using_native_amp=False, |
| 237 | + using_lbfgs=False |
| 238 | + ): |
| 239 | + if optimizer_idx == 0: |
| 240 | + assert self.layer_1[0].weight.requires_grad is True |
| 241 | + assert self.layer_1[2].weight.requires_grad is False |
| 242 | + assert self.layer_1[4].weight.requires_grad is False |
| 243 | + |
| 244 | + assert self.layer_2[1].weight.requires_grad is False |
| 245 | + assert self.layer_2[3].weight.requires_grad is False |
| 246 | + assert self.layer_2[5].weight.requires_grad is False |
| 247 | + |
| 248 | + if optimizer_idx == 1: |
| 249 | + assert self.layer_1[0].weight.requires_grad is False |
| 250 | + assert self.layer_1[2].weight.requires_grad is False |
| 251 | + assert self.layer_1[4].weight.requires_grad is False |
| 252 | + |
| 253 | + assert self.layer_2[1].weight.requires_grad is False |
| 254 | + assert self.layer_2[3].weight.requires_grad is False |
| 255 | + assert self.layer_2[5].weight.requires_grad is True |
| 256 | + |
| 257 | + optimizer.step(closure=closure) |
| 258 | + |
| 259 | + model = TestModel() |
| 260 | + model.training_epoch_end = None |
| 261 | + |
| 262 | + trainer = Trainer( |
| 263 | + max_epochs=1, |
| 264 | + default_root_dir=tmpdir, |
| 265 | + limit_train_batches=8, |
| 266 | + accumulate_grad_batches=1, |
| 267 | + limit_val_batches=0, |
| 268 | + ) |
| 269 | + |
| 270 | + results = trainer.fit(model) |
| 271 | + assert results |
| 272 | + |
| 273 | + |
| 274 | +def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir): |
| 275 | + |
| 276 | + class TestModel(BoringModel): |
| 277 | + |
| 278 | + def __init__(self): |
| 279 | + super().__init__() |
| 280 | + self.layer_1 = nn.Sequential( |
| 281 | + nn.Linear(32, 32), |
| 282 | + nn.ReLU(), |
| 283 | + nn.Linear(32, 32), |
| 284 | + nn.ReLU(), |
| 285 | + nn.Linear(32, 32), |
| 286 | + ) |
| 287 | + |
| 288 | + self.layer_2 = nn.Sequential( |
| 289 | + nn.ReLU(), |
| 290 | + nn.Linear(32, 32), |
| 291 | + nn.ReLU(), |
| 292 | + nn.Linear(32, 32), |
| 293 | + nn.ReLU(), |
| 294 | + nn.Linear(32, 2) |
| 295 | + ) |
| 296 | + |
| 297 | + self.layer_3 = nn.Sequential( |
| 298 | + nn.ReLU(), |
| 299 | + nn.Linear(32, 32), |
| 300 | + nn.ReLU(), |
| 301 | + nn.Linear(32, 32), |
| 302 | + nn.ReLU(), |
| 303 | + nn.Linear(32, 2) |
| 304 | + ) |
| 305 | + |
| 306 | + # set some weights to False to check untoggle works as expected. |
| 307 | + self.layer_1[2].weight.requires_grad = False |
| 308 | + self.layer_1[4].weight.requires_grad = False |
| 309 | + |
| 310 | + self.layer_2[1].weight.requires_grad = False |
| 311 | + self.layer_2[3].weight.requires_grad = False |
| 312 | + |
| 313 | + self.layer_3[1].weight.requires_grad = False |
| 314 | + self.layer_3[5].weight.requires_grad = False |
| 315 | + |
| 316 | + def optimizer_step( |
| 317 | + self, |
| 318 | + current_epoch, |
| 319 | + batch_nb, |
| 320 | + optimizer, |
| 321 | + optimizer_idx, |
| 322 | + closure, |
| 323 | + on_tpu=False, |
| 324 | + using_native_amp=False, |
| 325 | + using_lbfgs=False |
| 326 | + ): |
| 327 | + if optimizer_idx == 0: |
| 328 | + assert self.layer_1[0].weight.requires_grad is True |
| 329 | + assert self.layer_1[2].weight.requires_grad is False |
| 330 | + assert self.layer_1[4].weight.requires_grad is False |
| 331 | + |
| 332 | + assert self.layer_2[1].weight.requires_grad is False |
| 333 | + assert self.layer_2[3].weight.requires_grad is False |
| 334 | + assert self.layer_2[5].weight.requires_grad is True |
| 335 | + |
| 336 | + assert self.layer_3[1].weight.requires_grad is False |
| 337 | + assert self.layer_3[3].weight.requires_grad is False |
| 338 | + assert self.layer_3[5].weight.requires_grad is False |
| 339 | + |
| 340 | + if optimizer_idx == 1: |
| 341 | + assert self.layer_1[0].weight.requires_grad is False |
| 342 | + assert self.layer_1[2].weight.requires_grad is False |
| 343 | + assert self.layer_1[4].weight.requires_grad is False |
| 344 | + |
| 345 | + assert self.layer_2[1].weight.requires_grad is False |
| 346 | + assert self.layer_2[3].weight.requires_grad is False |
| 347 | + assert self.layer_2[5].weight.requires_grad is True |
| 348 | + |
| 349 | + assert self.layer_3[1].weight.requires_grad is False |
| 350 | + assert self.layer_3[3].weight.requires_grad is True |
| 351 | + assert self.layer_3[5].weight.requires_grad is False |
| 352 | + |
| 353 | + if optimizer_idx == 2: |
| 354 | + assert self.layer_1[0].weight.requires_grad is True |
| 355 | + assert self.layer_1[2].weight.requires_grad is False |
| 356 | + assert self.layer_1[4].weight.requires_grad is False |
| 357 | + |
| 358 | + assert self.layer_2[1].weight.requires_grad is False |
| 359 | + assert self.layer_2[3].weight.requires_grad is False |
| 360 | + assert self.layer_2[5].weight.requires_grad is False |
| 361 | + |
| 362 | + assert self.layer_3[1].weight.requires_grad is False |
| 363 | + assert self.layer_3[3].weight.requires_grad is True |
| 364 | + assert self.layer_3[5].weight.requires_grad is False |
| 365 | + |
| 366 | + optimizer.step(closure=closure) |
| 367 | + |
| 368 | + def training_step(self, batch, batch_idx, optimizer_idx=None): |
| 369 | + return super().training_step(batch, batch_idx) |
| 370 | + |
| 371 | + @staticmethod |
| 372 | + def combine_generators(gen_1, gen_2): |
| 373 | + for p in gen_1: |
| 374 | + yield p |
| 375 | + for p in gen_2: |
| 376 | + yield p |
| 377 | + |
| 378 | + def configure_optimizers(self): |
| 379 | + optimizer_1 = SGD( |
| 380 | + self.combine_generators( |
| 381 | + self.layer_1.parameters(), |
| 382 | + self.layer_2.parameters() |
| 383 | + ), |
| 384 | + lr=0.1 |
| 385 | + ) |
| 386 | + optimizer_2 = Adam( |
| 387 | + self.combine_generators( |
| 388 | + self.layer_2.parameters(), |
| 389 | + self.layer_3.parameters() |
| 390 | + ), |
| 391 | + lr=0.1 |
| 392 | + ) |
| 393 | + optimizer_3 = SGD( |
| 394 | + self.combine_generators( |
| 395 | + self.layer_3.parameters(), |
| 396 | + self.layer_1.parameters() |
| 397 | + ), |
| 398 | + lr=0.1 |
| 399 | + ) |
| 400 | + return [optimizer_1, optimizer_2, optimizer_3] |
| 401 | + |
| 402 | + model = TestModel() |
| 403 | + model.training_epoch_end = None |
| 404 | + |
| 405 | + trainer = Trainer( |
| 406 | + max_epochs=1, |
| 407 | + default_root_dir=tmpdir, |
| 408 | + limit_train_batches=8, |
| 409 | + accumulate_grad_batches=1, |
| 410 | + ) |
| 411 | + |
| 412 | + trainer.fit(model) |
0 commit comments