From a84265aba268cf87282a185ce3b423c3b1984821 Mon Sep 17 00:00:00 2001 From: Vincent Roseberry Date: Tue, 15 Dec 2020 23:01:55 +0000 Subject: [PATCH 1/2] Upgrade LightGBM to v3.1.1 Fixes #909. BUG=175727746 --- Dockerfile | 2 +- gpu.Dockerfile | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Dockerfile b/Dockerfile index e82f055b..6788bcae 100644 --- a/Dockerfile +++ b/Dockerfile @@ -79,7 +79,7 @@ RUN apt-get install -y libfreetype6-dev && \ pip install wordcloud && \ pip install xgboost && \ # Pinned to match GPU version. Update version together. - pip install lightgbm==2.3.1 && \ + pip install lightgbm==3.1.1 && \ pip install keras && \ pip install keras-tuner && \ pip install flake8 && \ diff --git a/gpu.Dockerfile b/gpu.Dockerfile index 9592eb77..a9ab9ed8 100644 --- a/gpu.Dockerfile +++ b/gpu.Dockerfile @@ -69,7 +69,7 @@ RUN pip uninstall -y lightgbm && \ cd /usr/local/src && \ git clone --recursive https://github.com/microsoft/LightGBM && \ cd LightGBM && \ - git checkout tags/v2.3.1 && \ + git checkout tags/v3.1.1 && \ mkdir build && cd build && \ cmake -DUSE_GPU=1 -DOpenCL_LIBRARY=/usr/local/cuda/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=/usr/local/cuda/include/ .. && \ make -j$(nproc) && \ From 702d5ac3ffc7886f295d963f8420cb21f4010648 Mon Sep 17 00:00:00 2001 From: Vincent Roseberry Date: Tue, 15 Dec 2020 23:29:15 +0000 Subject: [PATCH 2/2] Use .csv files in tests rather than binary format. The binary format is not meant to be compatible between versions. --- tests/data/lgb_test.bin | Bin 1528 -> 0 bytes tests/data/lgb_test.csv | 100 +++++++++++++++++++++++++++++++++++++++ tests/data/lgb_train.bin | Bin 1903 -> 0 bytes tests/data/lgb_train.csv | 100 +++++++++++++++++++++++++++++++++++++++ tests/test_lightgbm.py | 23 +++++++-- 5 files changed, 218 insertions(+), 5 deletions(-) delete mode 100644 tests/data/lgb_test.bin create mode 100644 tests/data/lgb_test.csv delete mode 100644 tests/data/lgb_train.bin create mode 100644 tests/data/lgb_train.csv diff --git a/tests/data/lgb_test.bin b/tests/data/lgb_test.bin deleted file mode 100644 index 55f068339807baccfc8e51a4c0f4558c249ed695..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1528 zcmdT^J8u**5OywmyXSqJ*WSy6M?*smxggQm3KCF2N57&-!ijK^5EQBIS5N>o4T?mK zM1e$w6c7cX;t$ZR5QqpNf$jO6vmk<+IeBJw=Cl3Hcyw*+)a!Y04NeFtQSI~%apJyt42 z&%mz3UX9T4InIyQ9M);_|Fl1UlYs?Z+TFQ-XWE{N{PU5&7Ww1(9pt@7z;!DUWBvbr zJqrc7CWprfF>h%Kp6fRUPJW>4?B$aOPcL2=J9(wuX2#y>?JXxC^jnYp2-_k48MrU{ zv7fB3dfo5;2HYWV-^0t!{4q}LJN4pV|FyGLj%Lx_Jo2|6t2*r&ZH)}lo;K0_H;qs- z(d358D-FemhRP6z@-@C|L+49FZIH+-fn=1V1|s71x7)$||nmpNdD#yIqW>Zi>; zyk`$Q7r`?zG~RviOo2;*%YYjI$AQa%%YiF^D}k$k8y?M3m>+thZdRszz781-G_zQhdtzVEsO-Fb5?C&=VOObe16v<7?%#9vu|Rg`Gd8g1 z-f(-DcLs-5zQ+2>_NRi>1o#g4<3mt)UVV;>hu0=-Q22Pe-}ud#1s+*ixORE5cVH+! zI22C~#qG^+_~@Z)z?xI*|Fc_G$A5pltS`phRXt>NuJV4GpB8UkJNp6C(|EqV`uOmn zwzC(7zvy?x+^n5%-IL{}+i7>F z^1XR?BG2;nR430Lt*o3~TVGw9zIf;6+NKW8Cs5hbBgx&^yj1j>U z6HG{mgMc7R2_*rI!jNFQY#~4vgAfWM99p1BGMOfZrGhDGxK83kWHK{aXU&9hE}BVV zbS!l$nNmte@%~}unp?zzO?6pq16}O~?f=x!hx`u6?*#lV=xNZW1f!6lFdz)$AeM|u$|#~%tti5nMVy4(Dj1?5q?jTW zW@*M#nGh3&Ru5r>RZQtbrzSH>avm$DOd>efaVVrrsQlYmYn1*Us+IGKdASkH3<72t zn32-|TOlx`fTMtm0LK8w0Ve<_04D(#15N=>|C-f$M*SrZ`kG6TWJ)oSD$cWJrj1c) z5-YB>l0r3`Lh8hBkkp17nZ{BI6h$#+G~fYag42M=h(wG>oP`)u%9TJ)@DNeX7>RxY D5?o;w diff --git a/tests/data/lgb_train.csv b/tests/data/lgb_train.csv new file mode 100644 index 00000000..cb1874a6 --- /dev/null +++ b/tests/data/lgb_train.csv @@ -0,0 +1,100 @@ +1 0.869 -0.635 0.226 0.327 -0.690 0.754 -0.249 -1.092 0.000 1.375 -0.654 0.930 1.107 1.139 -1.578 -1.047 0.000 0.658 -0.010 -0.046 3.102 1.354 0.980 0.978 0.920 0.722 0.989 0.877 +1 0.908 0.329 0.359 1.498 -0.313 1.096 -0.558 -1.588 2.173 0.813 -0.214 1.271 2.215 0.500 -1.261 0.732 0.000 0.399 -1.139 -0.001 0.000 0.302 0.833 0.986 0.978 0.780 0.992 0.798 +1 0.799 1.471 -1.636 0.454 0.426 1.105 1.282 1.382 0.000 0.852 1.541 -0.820 2.215 0.993 0.356 -0.209 2.548 1.257 1.129 0.900 0.000 0.910 1.108 0.986 0.951 0.803 0.866 0.780 +0 1.344 -0.877 0.936 1.992 0.882 1.786 -1.647 -0.942 0.000 2.423 -0.676 0.736 2.215 1.299 -1.431 -0.365 0.000 0.745 -0.678 -1.360 0.000 0.947 1.029 0.999 0.728 0.869 1.027 0.958 +1 1.105 0.321 1.522 0.883 -1.205 0.681 -1.070 -0.922 0.000 0.801 1.021 0.971 2.215 0.597 -0.350 0.631 0.000 0.480 -0.374 0.113 0.000 0.756 1.361 0.987 0.838 1.133 0.872 0.808 +0 1.596 -0.608 0.007 1.818 -0.112 0.848 -0.566 1.581 2.173 0.755 0.643 1.426 0.000 0.922 -1.190 -1.616 0.000 0.651 -0.654 -1.274 3.102 0.824 0.938 0.972 0.789 0.431 0.961 0.958 +1 0.409 -1.885 -1.027 1.672 -1.605 1.338 0.055 0.013 2.173 0.510 -1.038 0.708 0.000 0.747 -0.358 -1.647 0.000 0.367 0.069 1.377 3.102 0.869 1.222 1.001 0.545 0.699 0.977 0.829 +1 0.934 0.629 0.528 0.238 -0.967 0.548 -0.059 -1.707 2.173 0.941 -2.654 -0.157 0.000 1.030 -0.176 0.523 2.548 1.374 1.291 -1.467 0.000 0.902 1.084 0.980 0.783 0.849 0.894 0.775 +1 1.405 0.537 0.690 1.180 -0.110 3.202 -1.527 -1.576 0.000 2.932 0.567 -0.130 2.215 1.787 0.899 0.585 2.548 0.402 -0.151 1.163 0.000 1.667 4.039 1.176 1.045 1.543 3.535 2.741 +1 1.177 0.104 1.397 0.480 0.266 1.136 1.535 -0.253 0.000 1.027 0.534 1.180 0.000 2.406 0.088 -0.977 2.548 1.250 0.269 0.530 0.000 0.833 0.774 0.986 1.104 0.849 0.937 0.812 +1 0.946 1.111 1.218 0.908 0.822 1.153 -0.365 -1.566 0.000 0.745 0.721 -0.376 2.215 0.609 0.308 -1.282 0.000 1.598 -0.451 0.064 3.102 0.829 0.981 0.994 0.908 0.776 0.783 0.725 +0 0.739 -0.178 0.830 0.505 -0.130 0.961 -0.356 -1.717 2.173 0.621 -0.482 -1.199 0.000 0.983 0.081 -0.290 0.000 1.065 0.774 0.399 3.102 0.945 1.026 0.982 0.542 1.251 0.830 0.761 +1 1.384 0.117 -1.180 0.763 -0.080 1.020 0.877 1.277 2.173 0.331 1.410 -1.474 0.000 1.283 0.737 -0.225 0.000 1.560 0.847 0.505 3.102 0.959 0.807 1.192 1.221 0.861 0.929 0.838 +1 1.384 0.889 0.619 1.082 0.345 0.956 0.855 -1.129 2.173 0.546 -0.308 -0.623 2.215 0.348 1.024 0.184 0.000 0.781 -1.636 1.144 0.000 0.522 0.738 0.986 1.350 0.813 0.953 0.780 +1 1.344 0.839 -1.061 2.472 -0.573 1.513 1.144 0.856 0.000 0.884 1.475 -1.361 1.107 1.587 2.235 0.078 0.000 1.609 2.396 0.757 0.000 0.934 0.845 1.078 1.400 0.948 1.008 0.901 +0 0.547 -0.350 -0.647 2.040 0.276 0.545 0.839 1.729 0.000 0.653 1.472 1.243 0.000 0.786 -0.044 -1.020 2.548 0.419 -0.629 1.571 3.102 0.689 0.867 1.082 0.664 0.354 0.580 0.817 +1 1.484 1.700 -1.059 2.700 -1.056 2.409 0.457 0.345 0.000 1.415 1.114 -1.449 0.000 1.013 -2.057 1.131 0.000 0.905 2.182 1.043 0.000 1.654 0.994 0.983 0.741 0.163 0.592 0.745 +0 1.058 -0.161 -0.195 2.705 -0.751 1.910 -1.032 0.865 0.000 1.301 0.147 -1.119 1.107 0.967 -0.367 1.108 0.000 0.555 -0.714 1.505 3.102 0.954 0.651 1.125 0.894 0.672 1.182 1.316 +0 0.675 1.121 -0.280 1.540 0.735 0.615 -0.507 0.795 2.173 0.219 -1.894 -0.581 0.000 1.246 -0.348 -0.856 2.548 0.753 -1.146 -1.375 0.000 0.907 0.898 1.120 1.269 1.089 1.015 0.915 +1 0.643 -1.430 1.519 0.941 0.887 1.615 -1.337 -0.267 1.087 1.667 0.656 -1.588 0.000 0.828 1.836 0.408 0.000 1.709 -0.347 -1.183 3.102 0.921 1.373 0.985 1.423 1.547 1.783 1.438 +1 1.102 0.427 1.717 0.934 0.776 1.279 -0.250 -0.926 2.173 1.067 0.434 0.681 0.000 1.054 0.004 0.255 0.000 0.743 1.208 -1.151 0.000 0.709 0.522 1.054 1.273 0.835 0.935 0.865 +1 1.330 0.202 1.173 0.135 -1.083 0.728 1.109 -0.540 1.087 0.462 0.133 -0.561 0.000 0.479 1.187 0.658 0.000 0.670 1.007 0.055 3.102 0.782 0.672 0.990 0.734 0.379 0.765 0.643 +0 1.290 -1.423 -0.687 0.131 -1.136 0.821 0.296 0.168 2.173 0.696 -0.469 -1.151 1.107 0.940 0.273 1.641 0.000 0.720 1.106 0.727 0.000 1.007 0.868 0.999 1.110 1.125 0.883 0.859 +1 1.048 -1.119 -0.957 0.996 -1.550 0.733 0.283 0.919 2.173 1.050 -0.041 0.109 2.215 0.943 0.320 -0.858 0.000 0.628 -0.325 1.217 0.000 0.873 0.873 0.976 1.373 0.888 1.207 0.999 +0 0.488 1.698 0.791 0.894 -0.709 1.563 -0.076 1.739 2.173 0.624 2.395 0.523 0.000 1.661 0.266 -0.218 2.548 0.947 -0.077 0.285 0.000 1.675 1.414 0.988 1.333 2.004 1.551 1.217 +0 1.413 -0.852 0.310 1.128 -1.510 0.820 1.153 -1.670 2.173 1.170 0.100 0.266 0.000 0.852 0.401 -1.334 0.000 1.370 0.960 -0.632 0.000 0.890 0.938 1.745 0.974 0.677 1.136 0.973 +1 0.770 -0.449 -0.986 0.966 -1.301 0.739 -1.033 0.875 1.087 1.369 -1.181 0.167 1.107 1.257 -0.122 -1.588 0.000 0.600 0.611 0.116 0.000 1.048 1.106 0.993 1.132 0.892 0.974 0.951 +0 2.468 0.664 1.024 0.317 1.407 0.996 -0.453 -0.500 0.000 0.348 1.016 -0.161 0.000 0.978 -2.634 -0.285 0.000 1.245 -0.472 1.464 3.102 1.006 0.795 0.996 0.945 0.322 0.735 1.470 +1 1.014 0.013 -0.485 0.695 1.701 0.597 0.076 0.143 2.173 0.917 0.685 1.713 2.215 0.531 -0.987 -1.654 0.000 0.963 1.295 0.264 0.000 1.576 1.067 1.072 0.806 1.130 0.838 0.752 +0 1.251 -0.750 1.090 0.462 -0.381 0.677 0.340 -0.711 0.000 0.601 -0.461 -1.247 0.000 0.822 0.985 -1.653 0.000 0.754 -0.907 0.279 3.102 0.848 0.842 1.021 0.666 0.411 0.607 0.638 +1 1.114 1.782 1.450 0.653 1.513 0.825 1.851 -0.480 0.000 0.846 1.158 0.514 2.215 0.520 2.685 1.542 0.000 1.042 0.549 -0.463 1.551 1.321 1.037 0.997 0.824 0.692 0.804 0.831 +1 0.657 -0.901 -0.855 1.176 1.487 0.745 -1.236 1.649 2.173 0.661 -2.099 0.137 0.000 1.780 -1.036 -0.213 0.000 1.236 -0.185 0.784 3.102 0.861 1.016 1.045 0.759 0.898 0.849 0.765 +0 1.009 -0.660 -1.539 1.316 -1.693 1.146 2.025 0.137 0.000 1.063 -0.539 1.052 2.215 1.124 0.548 -0.887 2.548 1.017 -0.057 0.172 0.000 1.076 0.939 0.974 0.932 1.346 0.854 0.822 +0 2.122 0.792 0.723 2.438 1.064 2.692 0.361 -0.993 2.173 1.725 1.204 0.488 2.215 0.267 -0.767 -1.134 0.000 1.372 0.601 -0.568 0.000 0.727 0.981 0.989 2.837 3.398 2.152 1.568 +1 0.304 -1.425 -1.646 1.166 -1.469 1.458 -0.472 0.510 2.173 0.867 -0.309 -1.605 0.000 1.317 0.136 -0.332 2.548 0.853 0.744 -1.365 0.000 0.760 0.980 0.986 1.376 1.309 1.081 0.957 +1 1.167 0.556 -0.911 0.908 0.051 1.078 0.387 1.253 0.000 1.213 0.155 -0.673 2.215 0.489 -1.384 0.704 0.000 1.348 0.692 -1.502 3.102 0.868 0.829 1.087 0.782 0.878 0.642 0.621 +1 0.880 0.617 -0.649 1.724 1.104 1.213 -0.576 1.216 2.173 0.782 -0.913 -0.102 0.000 1.183 -0.576 -0.783 0.000 0.432 1.286 -0.204 0.000 0.879 0.616 1.706 1.435 0.598 0.911 1.007 +0 0.313 1.256 -0.904 1.002 1.290 1.383 1.295 -1.528 2.173 1.160 -0.765 0.080 1.107 1.060 2.309 -0.340 0.000 0.852 1.129 0.378 0.000 0.911 1.480 0.988 1.000 2.976 1.837 1.444 +0 1.263 0.596 0.460 1.063 1.060 0.709 -0.613 -0.688 0.000 1.464 1.079 1.174 2.215 1.411 0.369 -0.596 1.274 0.611 0.293 -0.894 0.000 1.175 1.244 0.988 0.905 1.623 1.442 1.222 +1 1.121 -0.379 1.363 1.451 0.782 1.088 -0.803 -0.793 1.087 0.515 0.368 -0.665 0.000 0.708 -1.372 1.449 0.000 0.579 0.441 0.238 3.102 1.336 0.869 0.984 1.459 0.905 0.950 0.863 +0 1.205 0.916 -1.209 0.354 -0.706 1.124 1.045 0.787 0.000 0.489 -0.457 -1.033 2.215 0.388 1.276 0.000 0.000 0.443 -0.889 1.403 0.000 0.842 0.653 0.986 0.500 0.532 0.580 0.589 +1 0.420 -0.722 0.732 0.885 -0.724 0.741 1.244 1.619 0.000 1.248 0.281 0.076 2.215 1.085 0.331 1.242 0.000 1.025 0.086 -0.955 1.551 0.919 0.927 0.989 0.744 0.824 0.923 0.798 +0 1.380 1.427 1.105 1.788 0.982 1.955 -0.205 -0.852 1.087 0.901 -0.193 0.854 0.000 1.172 0.352 -0.512 1.274 0.445 -0.158 1.421 0.000 0.403 0.882 1.000 2.450 0.804 1.608 1.272 +1 0.704 0.369 -0.230 1.167 -1.430 0.721 0.012 1.508 2.173 0.683 0.028 0.688 2.215 1.013 -0.764 -0.222 0.000 0.930 0.082 -0.753 0.000 0.865 0.748 1.107 0.835 0.696 0.681 0.604 +1 0.695 0.420 1.203 0.769 -0.911 0.830 1.168 0.076 0.000 0.394 0.392 0.510 2.215 0.747 1.559 0.835 0.000 1.090 -0.422 -1.161 3.102 0.973 0.654 0.987 0.688 0.652 0.784 0.703 +1 0.312 1.722 1.411 1.133 1.163 0.756 1.210 -0.700 2.173 0.755 -0.053 -0.139 2.215 0.812 -0.193 1.153 0.000 0.847 1.298 1.682 0.000 1.010 1.000 0.996 1.118 0.931 0.860 0.794 +0 0.431 0.572 -0.684 2.262 0.155 1.178 0.178 -1.429 2.173 0.463 0.649 0.544 2.215 0.757 0.955 1.552 0.000 0.658 1.073 1.064 0.000 0.344 0.840 0.986 0.580 1.096 0.957 0.821 +0 0.309 -1.951 -1.229 1.592 0.770 0.633 -0.197 -1.568 1.087 0.898 -1.885 -0.257 0.000 0.897 -0.933 0.931 2.548 1.280 -0.431 -0.799 0.000 0.921 0.862 0.990 0.812 0.831 1.026 0.895 +1 0.458 0.129 -0.519 1.195 0.737 0.534 -1.316 -1.729 0.000 0.687 0.351 1.103 2.215 0.911 1.049 -0.219 2.548 0.808 -1.014 -0.367 0.000 0.888 1.371 0.984 0.871 0.852 1.238 1.006 +0 0.637 -0.037 -1.732 1.254 -0.425 0.486 0.090 0.024 2.173 0.675 -1.119 1.644 0.000 0.494 -2.085 0.544 0.000 0.386 -0.239 1.092 0.000 0.913 0.912 1.144 0.698 0.525 0.741 0.726 +1 0.976 0.291 -1.128 0.668 -0.540 0.950 2.026 1.060 0.000 0.678 -0.571 1.307 2.215 1.199 1.293 -0.273 0.000 0.602 1.124 0.825 3.102 1.891 1.026 0.990 0.814 0.693 1.131 1.181 +1 0.535 -1.391 -0.825 1.343 -1.449 1.111 -0.852 -0.484 0.000 1.677 -0.700 1.069 2.215 0.623 0.018 -1.653 0.000 0.925 0.350 0.169 0.000 0.852 1.025 0.986 1.447 0.755 1.273 1.138 +0 2.638 1.289 -0.280 0.991 0.872 1.152 -0.702 1.551 2.173 0.643 -0.767 -1.689 0.000 0.747 -2.603 0.907 0.000 1.259 0.986 -0.759 0.000 0.889 0.937 1.931 2.569 0.709 1.666 1.322 +0 1.541 0.058 1.227 1.217 0.660 0.524 1.040 -0.640 0.000 0.709 -0.226 -0.727 2.215 0.543 1.360 1.720 0.000 0.981 0.326 -0.429 3.102 0.842 0.839 0.988 0.882 0.311 0.754 0.792 +0 2.559 -0.021 -1.615 2.095 -1.335 1.720 -0.641 0.033 2.173 0.737 -0.414 -0.379 0.000 1.158 -0.598 -1.608 2.548 0.847 1.549 0.847 0.000 0.980 0.951 1.004 0.748 1.751 1.606 1.295 +1 1.925 -0.859 1.353 1.769 -1.452 0.756 -0.342 -0.809 2.173 1.734 -0.850 0.151 0.000 0.944 -0.376 0.932 0.000 0.606 0.624 -1.039 0.000 0.964 0.931 1.474 1.062 0.530 0.907 0.819 +1 1.545 0.059 -1.732 1.034 0.807 2.467 -1.237 -0.565 0.000 1.933 2.370 -1.639 0.000 3.921 -0.645 0.727 2.548 1.843 -0.219 -0.527 3.102 2.292 2.692 1.319 1.447 1.914 3.176 2.387 +0 1.200 -1.018 -1.173 0.845 -0.439 0.601 -0.814 1.627 0.000 0.706 -1.103 0.845 0.000 1.111 -0.536 0.424 2.548 1.038 -0.456 -0.630 3.102 0.923 0.890 0.990 0.887 0.667 0.658 0.694 +0 0.609 -0.521 0.287 0.650 0.198 0.511 1.237 -0.670 2.173 0.648 -1.193 -1.686 2.215 0.364 1.444 0.064 0.000 0.451 1.152 0.677 0.000 0.433 0.925 0.983 0.770 1.497 0.925 0.731 +0 0.318 -1.381 -0.250 2.482 0.957 1.383 0.001 -0.222 2.173 1.045 -1.565 1.525 2.215 0.904 2.253 1.645 0.000 1.349 -0.541 -1.383 0.000 0.992 2.146 1.091 0.821 2.375 2.313 2.267 +1 0.947 -0.329 -0.033 0.020 -1.381 1.245 0.865 0.799 2.173 1.130 -0.013 -1.688 0.000 1.371 0.681 -0.931 0.000 0.982 0.958 0.019 0.000 1.001 0.587 0.525 0.860 0.892 0.820 0.697 +0 1.147 0.502 -1.131 1.237 -1.061 0.869 0.812 0.520 0.000 1.011 0.808 1.346 2.215 0.635 1.284 -0.138 0.000 0.538 0.612 0.124 3.102 0.848 0.987 0.993 0.677 0.595 0.704 0.778 +1 1.028 -0.732 1.243 1.198 -0.032 0.756 -1.491 1.404 0.000 1.343 -1.475 -0.263 2.215 0.483 -2.591 1.686 0.000 0.707 -0.687 -1.342 1.551 0.831 0.686 1.402 1.093 0.791 0.829 0.856 +1 0.303 1.225 0.629 1.256 -0.602 0.897 0.529 0.974 2.173 0.913 -0.667 -0.299 2.215 0.991 0.560 1.376 0.000 0.534 -1.176 -0.672 0.000 0.771 1.006 0.988 0.700 1.491 0.876 0.757 +0 0.534 -0.766 -0.533 0.974 -1.501 0.797 -1.574 0.323 2.173 1.137 0.271 -0.998 2.215 2.434 2.003 1.210 0.000 1.956 0.216 -0.272 0.000 3.588 2.573 0.989 1.251 1.990 2.742 2.023 +0 0.459 -1.448 -0.858 0.262 -0.304 0.760 1.090 -0.338 2.173 1.076 -1.079 1.151 2.215 0.357 -0.614 1.522 0.000 0.506 1.609 -1.293 0.000 0.842 0.866 0.988 0.935 2.209 1.120 0.920 +0 1.076 1.912 -0.667 0.618 -0.665 0.496 -1.524 1.127 0.000 0.944 -0.870 0.103 2.215 0.935 1.243 1.271 2.548 1.235 -0.512 -1.578 0.000 0.961 1.036 0.975 0.872 1.634 1.178 1.285 +1 0.442 1.823 -1.466 0.988 -1.565 1.444 -2.428 0.846 0.000 2.252 0.525 -0.141 1.107 2.366 0.328 -1.663 0.000 1.064 -0.091 -0.788 0.000 0.657 0.900 0.991 0.834 1.460 1.053 0.845 +1 0.575 -0.588 1.555 0.501 0.137 0.407 -1.782 1.262 0.000 0.348 -1.980 0.111 0.000 0.942 -0.695 -1.028 2.548 0.607 0.406 -0.667 3.102 0.695 0.884 0.987 0.705 0.428 0.634 0.590 +0 0.999 1.633 1.532 1.019 -0.793 0.613 -0.171 1.109 1.087 0.817 0.619 0.904 0.000 1.225 0.506 -0.244 0.000 1.189 1.033 0.553 0.000 0.992 0.948 1.211 1.278 0.973 1.015 0.924 +1 1.175 -0.643 0.099 1.273 -0.627 0.584 -0.133 -1.130 0.000 0.561 0.226 1.221 0.000 1.565 1.090 1.382 2.548 0.522 0.666 0.624 0.000 0.936 1.043 1.030 0.500 1.077 1.064 0.882 +0 0.733 -0.490 1.685 2.278 1.609 1.372 -1.278 -0.212 0.000 1.102 0.960 1.197 2.215 1.219 -0.308 -0.175 2.548 0.483 -0.242 -0.916 0.000 0.982 0.782 0.988 1.978 1.458 1.476 1.445 +1 1.792 -0.344 0.136 0.841 -0.813 1.685 0.625 1.499 0.000 0.548 0.587 -1.315 0.000 0.806 2.248 -0.160 0.000 1.011 1.329 -0.285 3.102 1.160 0.878 1.283 1.102 0.299 0.793 1.010 +1 0.641 1.633 0.001 1.118 1.010 1.013 0.750 1.516 0.000 1.438 0.526 0.358 2.215 1.649 0.175 -0.915 0.000 1.605 -0.493 -0.864 1.551 0.845 0.645 0.987 0.815 1.472 1.009 0.965 +0 0.442 0.276 0.929 1.638 -1.072 1.752 0.460 -0.802 2.173 1.436 -2.551 0.752 0.000 1.424 0.493 0.587 0.000 1.545 0.634 1.463 3.102 0.521 0.675 1.148 0.917 1.574 1.078 0.926 +1 1.152 0.873 -1.400 0.290 -0.264 0.831 0.373 -0.288 0.000 1.157 0.599 0.723 2.215 1.550 0.878 1.527 1.274 1.283 0.871 -0.714 0.000 0.798 1.181 0.988 0.758 0.975 0.987 0.872 +0 0.546 0.444 -0.292 1.429 -1.480 1.474 0.659 -1.104 2.173 2.622 0.481 0.538 0.000 0.685 -0.777 1.058 2.548 0.564 -1.013 -1.035 0.000 0.413 1.265 1.073 0.854 1.565 0.917 0.799 +1 1.274 -0.150 -0.628 1.824 -0.101 2.833 1.929 -1.628 0.000 1.361 0.040 0.111 2.215 2.690 0.230 0.574 1.274 0.776 0.382 -1.153 0.000 2.074 3.255 0.990 1.344 0.851 2.496 2.299 +1 0.625 -0.506 1.263 0.814 -1.314 1.228 -0.925 -0.091 0.000 1.217 0.430 1.588 2.215 0.976 0.010 -0.291 2.548 0.518 -1.251 0.127 0.000 0.921 0.750 0.986 0.647 1.177 1.064 0.929 +0 0.667 1.941 -0.188 0.446 0.506 1.049 0.577 1.737 1.087 1.508 0.766 -0.323 2.215 0.930 0.075 1.093 0.000 0.677 -0.442 -0.886 0.000 0.930 1.235 0.988 0.754 1.785 1.221 1.047 +1 1.864 0.056 -0.290 0.550 0.224 0.604 0.555 0.877 0.000 1.060 -0.375 1.727 2.215 0.824 -1.420 -0.485 0.000 0.817 0.925 1.318 0.000 0.510 0.916 0.990 0.821 0.441 0.842 0.785 +0 0.732 -0.712 -0.454 0.451 -0.392 1.167 0.448 0.949 2.173 0.920 0.120 1.609 0.000 0.926 1.528 -0.666 2.548 0.615 0.689 -0.687 0.000 0.930 0.983 0.987 1.117 1.539 0.967 0.852 +1 1.065 -0.611 -0.375 1.116 0.990 0.582 -1.434 -0.946 0.000 0.986 -0.550 -1.030 0.000 1.145 1.286 0.130 0.000 1.169 0.648 1.056 3.102 0.936 0.946 1.424 0.845 0.724 0.728 0.717 +1 0.910 -1.631 -0.125 1.964 -0.646 1.310 -0.927 1.357 2.173 0.445 -0.372 0.368 0.000 1.188 -1.481 0.595 0.000 1.407 -0.139 -1.529 3.102 0.984 0.993 0.996 1.619 0.930 1.159 0.979 +0 0.512 0.589 -1.486 0.552 -0.637 0.439 -0.923 -0.210 2.173 1.266 0.445 1.368 2.215 0.366 0.425 -0.052 0.000 0.641 -0.054 0.686 0.000 0.360 0.633 0.983 0.645 1.362 0.814 0.639 +1 1.377 -0.587 -0.869 1.735 -1.399 0.433 -0.277 0.236 2.173 0.921 0.321 1.152 1.107 0.330 -0.051 1.366 0.000 1.935 -2.212 0.028 0.000 0.635 0.758 0.988 0.980 0.740 0.923 0.794 +1 1.825 0.661 -0.885 1.030 0.833 1.565 2.020 -0.009 0.000 1.341 0.817 1.398 1.107 1.286 0.089 -1.706 0.000 1.295 1.032 -1.295 0.000 1.000 0.904 1.900 1.043 0.663 0.883 0.810 +1 1.477 0.870 0.367 0.643 0.024 0.425 0.141 0.632 0.000 1.340 0.221 -1.515 0.000 0.334 0.049 -1.312 2.548 1.172 1.080 -1.022 3.102 1.499 1.109 0.984 0.654 0.340 0.633 0.750 +1 1.074 -0.203 0.943 1.242 -1.727 0.952 -0.813 -0.239 2.173 0.629 -1.616 1.494 0.000 0.759 -0.793 -1.276 2.548 0.668 -0.085 -0.832 0.000 0.921 0.765 1.075 0.735 0.852 0.866 0.765 +1 0.652 0.084 -0.285 0.344 -0.839 1.105 0.260 1.644 2.173 0.700 0.765 -0.311 1.107 0.762 1.143 0.745 0.000 0.977 1.361 0.130 0.000 0.532 1.219 0.991 0.562 1.316 0.871 0.769 +1 1.748 -1.259 -1.568 1.159 -1.308 2.531 -0.895 -0.116 2.173 1.097 -0.529 1.515 1.107 1.602 0.505 1.042 0.000 0.954 -0.732 -1.359 0.000 1.553 1.095 0.985 2.288 2.479 1.717 1.644 +1 0.653 0.816 1.491 1.173 0.353 0.999 0.795 0.099 2.173 1.032 1.716 -0.995 0.000 1.052 0.893 -1.388 0.000 1.044 -0.757 -1.378 0.000 0.849 1.122 1.037 0.773 1.037 1.016 0.879 +1 0.603 -1.305 -0.295 1.986 -0.397 1.038 0.458 1.221 2.173 0.430 0.015 1.719 2.215 0.470 0.031 -0.543 0.000 0.524 -1.371 0.515 0.000 0.682 1.045 0.984 1.363 0.480 1.875 1.364 +0 0.510 -0.400 1.364 1.352 -0.990 0.630 -0.448 0.685 2.173 0.594 -0.795 -0.770 2.215 0.600 0.602 0.801 0.000 0.456 -0.936 1.413 0.000 0.659 0.725 0.988 0.901 0.886 0.668 0.599 +1 0.664 -0.216 0.435 1.156 1.437 1.839 -2.034 0.306 0.000 2.575 0.989 -1.165 2.215 1.506 1.083 -1.623 0.000 0.631 0.661 0.674 3.102 0.839 0.945 0.988 0.541 1.154 0.998 0.837 +1 1.436 1.090 0.733 0.278 -0.823 2.421 1.483 0.320 0.000 2.447 -1.403 -1.503 2.215 2.000 2.287 -1.506 0.000 2.205 1.306 -0.221 0.000 1.660 2.246 0.983 2.974 1.665 3.841 2.825 +1 0.709 0.850 0.672 0.949 -1.138 1.241 0.417 1.582 2.173 0.957 0.470 -0.037 2.215 0.877 0.102 0.661 0.000 1.705 1.461 -0.759 0.000 0.972 0.856 1.134 0.950 1.595 1.049 0.923 +0 1.135 0.285 -1.109 1.089 -0.896 1.103 0.127 0.964 0.000 0.731 -0.489 0.048 2.215 0.754 0.464 0.380 0.000 0.715 -1.183 -0.956 1.551 0.883 0.926 0.987 1.058 0.600 0.887 0.971 +1 1.124 0.354 0.040 1.132 1.620 0.956 1.375 0.416 0.000 1.543 0.437 -0.805 2.215 1.724 1.678 -1.636 0.000 2.128 -0.175 1.562 0.000 0.852 1.251 1.546 0.743 0.139 0.718 0.746 +1 0.341 -1.223 -1.373 0.994 0.692 1.086 0.319 -1.186 0.000 1.213 1.562 0.163 2.215 1.057 0.491 1.657 2.548 0.565 1.305 0.426 0.000 1.430 0.975 0.988 1.257 1.353 1.040 0.963 diff --git a/tests/test_lightgbm.py b/tests/test_lightgbm.py index 694010a9..09650bfe 100644 --- a/tests/test_lightgbm.py +++ b/tests/test_lightgbm.py @@ -1,6 +1,7 @@ import unittest import lightgbm as lgb +import pandas as pd from common import gpu_test @@ -8,8 +9,7 @@ class TestLightgbm(unittest.TestCase): # Based on the "simple_example" from their documentation: # https://github.com/Microsoft/LightGBM/blob/master/examples/python-guide/simple_example.py def test_cpu(self): - lgb_train = lgb.Dataset('/input/tests/data/lgb_train.bin') - lgb_eval = lgb.Dataset('/input/tests/data/lgb_test.bin', reference=lgb_train) + lgb_train, lgb_eval = self.load_datasets() params = { 'task': 'train', @@ -35,9 +35,8 @@ def test_cpu(self): @gpu_test def test_gpu(self): - lgb_train = lgb.Dataset('/input/tests/data/lgb_train.bin') - lgb_eval = lgb.Dataset('/input/tests/data/lgb_test.bin', reference=lgb_train) - + lgb_train, lgb_eval = self.load_datasets() + params = { 'boosting_type': 'gbdt', 'objective': 'regression', @@ -59,3 +58,17 @@ def test_gpu(self): early_stopping_rounds=1) self.assertEqual(1, gbm.best_iteration) + + def load_datasets(self): + df_train = pd.read_csv('/input/tests/data/lgb_train.csv', header=None, sep='\t') + df_test = pd.read_csv('/input/tests/data/lgb_test.csv', header=None, sep='\t') + + y_train = df_train[0] + y_test = df_test[0] + X_train = df_train.drop(0, axis=1) + X_test = df_test.drop(0, axis=1) + + lgb_train = lgb.Dataset(X_train, y_train) + lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) + + return (lgb_train, lgb_eval)