|
1 | | -type GlmResp{V<:FPStoredVector} <: ModResp # response in a glm model |
| 1 | +type GlmResp{V<:FPVector} <: ModResp # response in a glm model |
2 | 2 | y::V # response |
3 | 3 | d::UnivariateDistribution |
4 | 4 | l::Link |
@@ -43,14 +43,14 @@ linkinv!(r::GlmResp) = linkinv!(r.l, r.mu, r.eta) |
43 | 43 | # evaluate the mueta vector (derivative of mu w.r.t. eta) from the linear predictor (eta) |
44 | 44 | mueta!(r::GlmResp) = mueta!(r.l, r.mueta, r.eta) |
45 | 45 |
|
46 | | -function updatemu!{T<:FPStoredVector}(r::GlmResp{T}, linPr::T) |
| 46 | +function updatemu!{T<:FPVector}(r::GlmResp{T}, linPr::T) |
47 | 47 | n = length(linPr) |
48 | 48 | length(r.offset) == n ? map!(Add(), r.eta, linPr, r.offset) : copy!(r.eta, linPr) |
49 | 49 | linkinv!(r); mueta!(r); var!(r); wrkresid!(r); devresid!(r) |
50 | 50 | sum(r.devresid) |
51 | 51 | end |
52 | 52 |
|
53 | | -updatemu!{T<:FPStoredVector}(r::GlmResp{T}, linPr) = updatemu!(r, convert(T,vec(linPr))) |
| 53 | +updatemu!{T<:FPVector}(r::GlmResp{T}, linPr) = updatemu!(r, convert(T,vec(linPr))) |
54 | 54 |
|
55 | 55 | var!(r::GlmResp) = var!(r.d, r.var, r.mu) |
56 | 56 |
|
@@ -142,7 +142,7 @@ function StatsBase.fit(m::GlmMod, y; wts=nothing, offset=nothing, fitargs...) |
142 | 142 | dofit ? fit(m; fitargs...) : m |
143 | 143 | end |
144 | 144 |
|
145 | | -function StatsBase.fit{T<:FloatingPoint,V<:FPStoredVector}(::Type{GlmMod}, |
| 145 | +function StatsBase.fit{T<:FloatingPoint,V<:FPVector}(::Type{GlmMod}, |
146 | 146 | X::Matrix{T}, y::V, d::UnivariateDistribution, |
147 | 147 | l::Link=canonicallink(d); |
148 | 148 | dofit::Bool=true, |
|
0 commit comments