@@ -8,11 +8,11 @@ either `0` or `-1`. For `Real` `z`, the domain of the branch `k = -1` is `[-1/e,
88domain of the branch `k = 0` is `[-1/e, Inf]`. For `Complex` `z`, and all `k`, the domain is 
99the complex plane. 
1010
11- ```jldoctest 
12- julia> lambertw(-1/e , -1) 
11+ ```jldoctest; setup=:(using SpecialFunctions)  
12+ julia> lambertw(-1/ℯ , -1) 
1313-1.0 
1414
15- julia> lambertw(-1/e , 0) 
15+ julia> lambertw(-1/ℯ , 0) 
1616-1.0 
1717
1818julia> lambertw(0, 0) 
@@ -268,20 +268,19 @@ The result is accurate to Float64 precision for abs(z) < 0.32.
268268If `k=-1` and `imag(z) < 0`, the value on the branch `k=1` is returned. 
269269
270270# Example 
271- ```jldoctest 
272- julia> lambertw(-1/e  + 1e-18, -1) 
271+ ```jldoctest; setup=:(using SpecialFunctions)  
272+ julia> lambertw(-1/ℯ  + 1e-18, -1) 
273273-1.0 
274274
275275julia> lambertwbp(1e-18, -1) 
276276-2.331643983409312e-9 
277277
278- # Same result, but 1000 times slower 
279- julia> convert(Float64, (lambertw(-BigFloat(1)/e + BigFloat(10)^(-18), -1) + 1)) 
278+ julia> convert(Float64, (lambertw(-big(1)/ℯ + big(10)^(-18), -1) + 1)) # Same result, but 1000 times slower 
280279-2.331643983409312e-9 
281280``` 
282281
283282!!! note 
284-     `lambertwbp` uses a series expansion about the branch point `z=-1/e ` to avoid loss of precision. 
283+     `lambertwbp` uses a series expansion about the branch point `z=-1/ℯ ` to avoid loss of precision. 
285284    The loss of precision in `lambertw` is analogous to the loss of precision 
286285    in computing the `sqrt(1-x)` for `x` close to `1`. 
287286""" 
0 commit comments