@@ -19,9 +19,10 @@ function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
1919        lmul! (G, view (Hd, 1 : n, i: n))
2020        lmul! (G, B)
2121    end 
22-     ldiv! (UpperTriangular (Hd), B)
22+     LinearAlgebra . ldiv! (UpperTriangular (Hd), B)
2323end 
24- (\ )(H:: HessenbergMatrix , B:: AbstractVecOrMat ) =  ldiv! (copy (H), copy (B))
24+ LinearAlgebra.:\ (H:: HessenbergMatrix , B:: AbstractVecOrMat ) = 
25+     LinearAlgebra. ldiv! (copy (H), copy (B))
2526
2627#  Hessenberg factorization
2728struct  HessenbergFactorization{T,S<: StridedMatrix ,U} <:  Factorization{T} 
3233Base. copy (HF:: HessenbergFactorization{T,S,U} ) where  {T,S,U} = 
3334    HessenbergFactorization {T,S,U} (copy (HF. data), copy (HF. τ))
3435
35- function  _hessenberg !:: StridedMatrix{T} ) where  {T}
36+ function  hessenberg !:: StridedMatrix{T} ) where  {T}
3637    n =  LinearAlgebra. checksquare (A)
3738    τ =  Vector {Householder{T}} (undef, n -  1 )
3839    for  i =  1 : (n- 1 )
@@ -45,7 +46,6 @@ function _hessenberg!(A::StridedMatrix{T}) where {T}
4546    end 
4647    return  HessenbergFactorization {T,typeof(A),eltype(τ)} (A, τ)
4748end 
48- hessenberg! (A:: StridedMatrix ) =  _hessenberg! (A)
4949
5050Base. size (H:: HessenbergFactorization , args... ) =  size (H. data, args... )
5151
@@ -57,6 +57,8 @@ function Base.getproperty(F::HessenbergFactorization, s::Symbol)
5757    end 
5858end 
5959
60+ Base. propertynames (F:: HessenbergFactorization ) =  (fieldnames (typeof (F))... , :H )
61+ 
6062#  Schur
6163struct  Schur{T,S<: StridedMatrix } <:  Factorization{T} 
6264    data:: S 
@@ -165,7 +167,7 @@ function _schur!(
165167
166168    return  Schur {T,typeof(HH)} (HH, τ)
167169end 
168- schur! (A:: StridedMatrix ; kwargs... ) =  _schur! (_hessenberg !... )
170+ schur! (A:: StridedMatrix ; kwargs... ) =  _schur! (hessenberg !... )
169171
170172function  singleShiftQR! (
171173    HH:: StridedMatrix ,
0 commit comments