141141@inline _mul_partials (a:: Partials{0,A} , b:: Partials{N,B} , afactor, bfactor) where {N,A,B} = bfactor * b
142142@inline _mul_partials (a:: Partials{N,A} , b:: Partials{0,B} , afactor, bfactor) where {N,A,B} = afactor * a
143143
144+ const SIMDFloat = Union{Float64, Float32}
145+ const SIMDInt = Union{
146+ Int128, Int64, Int32, Int16, Int8,
147+ UInt128, UInt64, UInt32, UInt16, UInt8,
148+ }
149+ const SIMDType = Union{SIMDFloat, SIMDInt}
150+
144151# #################################
145152# Generated Functions on NTuples #
146153# #################################
164171@inline rand_tuple (:: AbstractRNG , :: Type{Tuple{}} ) = tuple ()
165172@inline rand_tuple (:: Type{Tuple{}} ) = tuple ()
166173
174+ iszero_tuple (tup:: NTuple{N,V} ) where {N, V<: SIMDType } = sum (Vec (tup) != zero (V)) == 0
167175@generated function iszero_tuple (tup:: NTuple{N,V} ) where {N,V}
168176 ex = Expr (:&& , [:(z == tup[$ i]) for i= 1 : N]. .. )
169177 return quote
@@ -205,15 +213,14 @@ const SIMDInt = Union{
205213 }
206214const SIMDType = Union{SIMDFloat, SIMDInt}
207215const NT{N,T} = NTuple{N,T}
208- using SIMD
209216
210217# SIMD implementation
211- add_tuples (a:: NT{N,T} , b:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (Vec (a) + Vec (b))
212- sub_tuples (a:: NT{N,T} , b:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (Vec (a) - Vec (b))
213- scale_tuple (tup:: NT{N,T} , x:: T ) where {N, T<: SIMDType } = Tuple (Vec (tup) * x)
214- div_tuple_by_scalar (tup:: NT{N,T} , x:: T ) where {N, T<: SIMDFloat } = Tuple (Vec (tup) / x)
215- minus_tuple (tup:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (- Vec (tup))
216- mul_tuples (a:: NT{N,T} , b:: NT{N,T} , af:: T , bf:: T ) where {N, T<: SIMDType } = Tuple (muladd (Vec {N,T} (af) , Vec (a), Vec {N,T} (bf) * Vec (b)))
218+ @inline add_tuples (a:: NT{N,T} , b:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (Vec (a) + Vec (b))
219+ @inline sub_tuples (a:: NT{N,T} , b:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (Vec (a) - Vec (b))
220+ @inline scale_tuple (tup:: NT{N,T} , x:: T ) where {N, T<: SIMDType } = Tuple (Vec (tup) * x)
221+ @inline div_tuple_by_scalar (tup:: NT{N,T} , x:: T ) where {N, T<: SIMDFloat } = Tuple (Vec (tup) / x)
222+ @inline minus_tuple (tup:: NT{N,T} ) where {N, T<: SIMDType } = Tuple (- Vec (tup))
223+ @inline mul_tuples (a:: NT{N,T} , b:: NT{N,T} , af:: T , bf:: T ) where {N, T<: SIMDType } = Tuple (muladd (af , Vec (a), bf * Vec (b)))
217224
218225
219226# Fallback implementations
@@ -222,7 +229,7 @@ mul_tuples(a::NT{N,T}, b::NT{N,T}, af::T, bf::T) where {N, T<:SIMDType} = Tuple
222229@generated scale_tuple (tup:: NT{N} , x) where N = tupexpr (i -> :(tup[$ i] * x), N)
223230@generated div_tuple_by_scalar (tup:: NT{N} , x) where N = tupexpr (i -> :(tup[$ i] / x), N)
224231@generated minus_tuple (tup:: NT{N} ) where N = tupexpr (i -> :(- tup[$ i]), N)
225- @generated mul_tuples (a:: NT{N} , b:: NT{N} , af, bf) where N = tupexpr (i -> :((af * a[$ i]) + ( bf * b[$ i])), N)
232+ @generated mul_tuples (a:: NT{N} , b:: NT{N} , af, bf) where N = tupexpr (i -> :(muladd (af, a[$ i], bf * b[$ i])), N)
226233
227234# ##################
228235# Pretty Printing #
0 commit comments