@@ -43,12 +43,12 @@ variables. This is summarized as:
43
43
44
44
In all functions, the inplace form is ` f!(dx,x) ` while the out of place form is ` dx = f(x) ` .
45
45
46
- ## Color Vectors
46
+ ## colorvec Vectors
47
47
48
- Color vectors are allowed to be supplied to the Jacobian routines, and these are
48
+ colorvec vectors are allowed to be supplied to the Jacobian routines, and these are
49
49
the directional derivatives for constructing the Jacobian. For example, an accurate
50
50
NxN tridiagonal Jacobian can be computed in just 4 ` f ` calls by using
51
- ` color =repeat(1:3,N÷3)` . For information on automatically generating color
51
+ ` colorvec =repeat(1:3,N÷3)` . For information on automatically generating colorvec
52
52
vectors of sparse matrices, see [ SparseDiffTools.jl] ( https://github.com/JuliaDiffEq/SparseDiffTools.jl ) .
53
53
54
54
Hessian coloring support is coming soon!
@@ -192,7 +192,7 @@ DiffEqDiffTools.finite_difference_jacobian(
192
192
inplace :: Type{Val{T3}} = Val{true };
193
193
relstep= default_relstep (fdtype, eltype (x)),
194
194
absstep= relstep,
195
- color = eachindex (x),
195
+ colorvec = eachindex (x),
196
196
sparsity = nothing )
197
197
198
198
finite_difference_jacobian! (J:: AbstractMatrix ,
@@ -204,7 +204,7 @@ finite_difference_jacobian!(J::AbstractMatrix,
204
204
f_in :: Union{T2,Nothing} = nothing ;
205
205
relstep= default_relstep (fdtype, eltype (x)),
206
206
absstep= relstep,
207
- color = eachindex (x),
207
+ colorvec = eachindex (x),
208
208
sparsity = J isa SparseMatrixCSC ? J : nothing )
209
209
210
210
# Cached
@@ -214,7 +214,7 @@ DiffEqDiffTools.finite_difference_jacobian(
214
214
cache:: JacobianCache ;
215
215
relstep= default_relstep (fdtype, eltype (x)),
216
216
absstep= relstep,
217
- color = eachindex (x),
217
+ colorvec = eachindex (x),
218
218
sparsity = nothing )
219
219
220
220
DiffEqDiffTools. finite_difference_jacobian! (
@@ -224,7 +224,7 @@ DiffEqDiffTools.finite_difference_jacobian!(
224
224
cache:: JacobianCache ;
225
225
relstep= default_relstep (fdtype, eltype (x)),
226
226
absstep= relstep,
227
- color = cache. color ,
227
+ colorvec = cache. colorvec ,
228
228
sparsity = cache. sparsity)
229
229
```
230
230
@@ -236,7 +236,7 @@ DiffEqDiffTools.JacobianCache(
236
236
fdtype :: Type{T1} = Val{:central },
237
237
returntype :: Type{T2} = eltype (x),
238
238
inplace :: Type{Val{T3}} = Val{true };
239
- color = eachindex (x)
239
+ colorvec = eachindex (x)
240
240
sparsity = nothing )
241
241
```
242
242
@@ -252,7 +252,7 @@ DiffEqDiffTools.JacobianCache(
252
252
fdtype :: Type{T1} = Val{:central },
253
253
returntype :: Type{T2} = eltype (fx),
254
254
inplace :: Type{Val{T3}} = Val{true };
255
- color = eachindex (x),
255
+ colorvec = eachindex (x),
256
256
sparsity = nothing )
257
257
```
258
258
0 commit comments