You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6-3Lines changed: 6 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -86,8 +86,10 @@ Here are some fully automated graph visualizations utilizing [GraphViz](https://
86
86
87
87
### Additional Prerequisites for Python and Jupyter Notebooks
88
88
89
-
- Python is required for Jupyter Notebook reports.
90
-
- A conda package manager like [Miniconda](https://docs.conda.io/projects/miniconda/en/latest) or [Anaconda](https://www.anaconda.com/download)(Recommended for Windows) is required for Jupyter Notebook reports.
89
+
- Python is required for Jupyter Notebook and Python reports.
90
+
- Either [Conda](https://docs.conda.io) or Python's build-in module [venv](https://docs.python.org/3/library/venv.html) a required as environment manager.
91
+
- For Conda, use for example [Miniconda](https://docs.conda.io/projects/miniconda/en/latest) or [Anaconda](https://www.anaconda.com/download)(Recommended for Windows).
92
+
- To use venv, no additional installation is needed. For that the environment variable `USE_VIRTUAL_PYTHON_ENVIRONMENT_VENV` needs to be set to `'true'`.
91
93
- Chromium will automatically be downloaded if needed for Jupyter Notebook PDF reports generation.
92
94
93
95
### Additional Prerequisites for Graph Visualization
@@ -131,13 +133,14 @@ The [Code Structure Analysis Pipeline](./.github/workflows/internal-java-code-an
- Setup [jQAssistant](https://jqassistant.github.io/jqassistant/current) for Java and [Typescript](https://github.com/jqassistant-plugin/jqassistant-typescript-plugin) analysis ([analysis.sh](./scripts/analysis/analyze.sh))
- Generate CSV Reports [scripts/reports](./scripts/reports) using the command line JSON parser [jq](https://jqlang.github.io/jq)
139
142
- Uses [Neo4j Graph Data Science](https://neo4j.com/product/graph-data-science) for community detection, centrality, similarity, node embeddings and topological sort ([analysis.sh](./scripts/analysis/analyze.sh))
140
-
- Generate [Jupyter Notebook](https://jupyter.org) reports using these libraries specified in the [environment.yml](./jupyter/environment.yml):
143
+
- Generate [Jupyter Notebook](https://jupyter.org) reports using these libraries specified in the [conda-environment.yml](./conda-environment.yml):
if createUndirectedDependencyProjection "${PROJECTION_NAME}=artifact-anomaly-detection""${PROJECTION_NODE}=Artifact""${PROJECTION_WEIGHT}=weight""${PROJECTION_LANGUAGE}=Java";then
if is_sufficient_data_available "${ALGORITHM_NODE}=Artifact""${ALGORITHM_WEIGHT}=weight";then
180
+
if createUndirectedDependencyProjection "${PROJECTION_NAME}=artifact-anomaly-detection""${PROJECTION_NODE}=Artifact""${PROJECTION_WEIGHT}=weight""${PROJECTION_LANGUAGE}=Java";then
if createUndirectedDependencyProjection "${PROJECTION_NAME}=package-anomaly-detection""${PROJECTION_NODE}=Package""${PROJECTION_WEIGHT}=weight25PercentInterfaces""${PROJECTION_LANGUAGE}=Java";then
if is_sufficient_data_available "${ALGORITHM_NODE}=Package""${ALGORITHM_WEIGHT}=weight25PercentInterfaces";then
189
+
if createUndirectedDependencyProjection "${PROJECTION_NAME}=package-anomaly-detection""${PROJECTION_NODE}=Package""${PROJECTION_WEIGHT}=weight25PercentInterfaces""${PROJECTION_LANGUAGE}=Java";then
if createUndirectedDependencyProjection "${PROJECTION_NAME}=typescript-module-embedding""${PROJECTION_NODE}=Module""${PROJECTION_WEIGHT}=lowCouplingElement25PercentWeight""${PROJECTION_LANGUAGE}=Typescript";then
if is_sufficient_data_available "${ALGORITHM_NODE}=Module""${ALGORITHM_WEIGHT}=lowCouplingElement25PercentWeight";then
207
+
if createUndirectedDependencyProjection "${PROJECTION_NAME}=typescript-module-embedding""${PROJECTION_NODE}=Module""${PROJECTION_WEIGHT}=lowCouplingElement25PercentWeight""${PROJECTION_LANGUAGE}=Typescript";then
# Print the number of samples and features in the feature matrix
466
467
n_samples=feature_matrix.shape[0]
467
-
print(f"tunedAnomalyDetectionExplained: Tuned Anomaly Detection: Number of samples: {n_samples}, Number of features: {feature_matrix.shape[1]}, Number of trials: {number_of_trials}")
468
+
print(f"tunedAnomalyDetectionExplained: Tuning Anomaly Detection: Number of samples: {n_samples}, Number of features: {feature_matrix.shape[1]}, Number of trials: {number_of_trials}")
print(f"Best Isolation & Random Forest parameters for {parameters.get_plot_prefix()} after {len(study.trials)}/{number_of_trials} trials with best #{study.best_trial.number} (Optuna):", study.best_params)
0 commit comments