|
| 1 | +# SPDX-FileCopyrightText: 2022 Intel Corporation |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | + |
| 5 | +import ctypes |
| 6 | +import logging |
| 7 | +from multiprocessing.dummy import Array |
| 8 | + |
| 9 | +import dpctl.memory as dpctl_mem |
| 10 | +import numpy as np |
| 11 | +from numba.core import types |
| 12 | + |
| 13 | +import numba_dpex.utils as utils |
| 14 | +from numba_dpex.core.exceptions import ( |
| 15 | + SUAIProtocolError, |
| 16 | + UnsupportedAccessQualifierError, |
| 17 | + UnsupportedKernelArgumentError, |
| 18 | +) |
| 19 | +from numba_dpex.dpctl_iface import USMNdArrayType |
| 20 | + |
| 21 | + |
| 22 | +class Packer: |
| 23 | + |
| 24 | + # TODO: Remove after NumPy support is removed |
| 25 | + _access_types = ("read_only", "write_only", "read_write") |
| 26 | + |
| 27 | + def _check_for_invalid_access_type(self, access_type): |
| 28 | + if access_type not in Packer._access_types: |
| 29 | + raise UnsupportedAccessQualifierError() |
| 30 | + # msg = ( |
| 31 | + # "[!] %s is not a valid access type. " |
| 32 | + # "Supported access types are [" % (access_type) |
| 33 | + # ) |
| 34 | + # for key in self.valid_access_types: |
| 35 | + # msg += " %s |" % (key) |
| 36 | + |
| 37 | + # msg = msg[:-1] + "]" |
| 38 | + # if access_type is not None: |
| 39 | + # print(msg) |
| 40 | + # return True |
| 41 | + # else: |
| 42 | + # return False |
| 43 | + |
| 44 | + def _get_info_from_suai(self, obj): |
| 45 | + """ |
| 46 | + Extracts the metadata of an arrya-like object that provides a |
| 47 | + __sycl_usm_array_interface__ (SUAI) attribute. |
| 48 | +
|
| 49 | + The ``dpctl.memory.as_usm_memory`` function converts the array-like |
| 50 | + object into a dpctl.memory.USMMemory object. Using the ``as_usm_memory`` |
| 51 | + is an implicit way to verify if the array-like object is a legal |
| 52 | + SYCL USM memory back Python object that can be passed to a dpex kernel. |
| 53 | +
|
| 54 | + Args: |
| 55 | + obj: array-like object with a SUAI attribute. |
| 56 | +
|
| 57 | + Returns: |
| 58 | + usm_mem: USM memory object. |
| 59 | + total_size: Total number of items in the array. |
| 60 | + shape: Shape of the array. |
| 61 | + ndim: Total number of dimensions. |
| 62 | + itemsize: Size of each item. |
| 63 | + strides: Stride of the array. |
| 64 | + dtype: Dtype of the array. |
| 65 | + """ |
| 66 | + try: |
| 67 | + usm_mem = dpctl_mem.as_usm_memory(obj) |
| 68 | + except Exception: |
| 69 | + logging.exception( |
| 70 | + "array-like object does not implement the SUAI protocol." |
| 71 | + ) |
| 72 | + # TODO |
| 73 | + raise SUAIProtocolError() |
| 74 | + |
| 75 | + shape = obj.__sycl_usm_array_interface__["shape"] |
| 76 | + total_size = np.prod(obj.__sycl_usm_array_interface__["shape"]) |
| 77 | + ndim = len(obj.__sycl_usm_array_interface__["shape"]) |
| 78 | + itemsize = np.dtype( |
| 79 | + obj.__sycl_usm_array_interface__["typestr"] |
| 80 | + ).itemsize |
| 81 | + dtype = np.dtype(obj.__sycl_usm_array_interface__["typestr"]) |
| 82 | + strides = obj.__sycl_usm_array_interface__["strides"] |
| 83 | + |
| 84 | + if strides is None: |
| 85 | + strides = [1] * ndim |
| 86 | + for i in reversed(range(1, ndim)): |
| 87 | + strides[i - 1] = strides[i] * shape[i] |
| 88 | + strides = tuple(strides) |
| 89 | + |
| 90 | + return usm_mem, total_size, shape, ndim, itemsize, strides, dtype |
| 91 | + |
| 92 | + def _unpack_array_helper(self, size, itemsize, buf, shape, strides, ndim): |
| 93 | + """ |
| 94 | + Implements the unpacking logic for array arguments. |
| 95 | +
|
| 96 | + TODO: Add more detail |
| 97 | +
|
| 98 | + Args: |
| 99 | + size: Total number of elements in the array. |
| 100 | + itemsize: Size in bytes of each element in the array. |
| 101 | + buf: The pointer to the memory. |
| 102 | + shape: The shape of the array. |
| 103 | + ndim: Number of dimension. |
| 104 | +
|
| 105 | + Returns: |
| 106 | + A list a ctype value for each array attribute argument |
| 107 | + """ |
| 108 | + unpacked_array_attrs = [] |
| 109 | + |
| 110 | + # meminfo (FIXME: should be removed and the USMArrayType modified once |
| 111 | + # NumPy support is removed) |
| 112 | + unpacked_array_attrs.append(ctypes.c_size_t(0)) |
| 113 | + # meminfo (FIXME: Evaluate if the attribute should be removed and the |
| 114 | + # USMArrayType modified once NumPy support is removed) |
| 115 | + unpacked_array_attrs.append(ctypes.c_size_t(0)) |
| 116 | + unpacked_array_attrs.append(ctypes.c_longlong(size)) |
| 117 | + unpacked_array_attrs.append(ctypes.c_longlong(itemsize)) |
| 118 | + unpacked_array_attrs.append(buf) |
| 119 | + for ax in range(ndim): |
| 120 | + unpacked_array_attrs.append(ctypes.c_longlong(shape[ax])) |
| 121 | + for ax in range(ndim): |
| 122 | + unpacked_array_attrs.append(ctypes.c_longlong(strides[ax])) |
| 123 | + |
| 124 | + return unpacked_array_attrs |
| 125 | + |
| 126 | + def _unpack_usm_array(self, val): |
| 127 | + ( |
| 128 | + usm_mem, |
| 129 | + total_size, |
| 130 | + shape, |
| 131 | + ndim, |
| 132 | + itemsize, |
| 133 | + strides, |
| 134 | + dtype, |
| 135 | + ) = self._get_info_from_suai(val) |
| 136 | + |
| 137 | + return self._unpack_device_array_argument( |
| 138 | + total_size, |
| 139 | + itemsize, |
| 140 | + usm_mem, |
| 141 | + shape, |
| 142 | + strides, |
| 143 | + ndim, |
| 144 | + ) |
| 145 | + |
| 146 | + def _unpack_array(self, val, access_type): |
| 147 | + packed_val = val |
| 148 | + # Check if the NumPy array is backed by USM memory |
| 149 | + usm_mem = utils.has_usm_memory(val) |
| 150 | + |
| 151 | + # If the NumPy array is not USM backed, then copy to a USM memory |
| 152 | + # object. Add an entry to the repack_map so that on exit from kernel |
| 153 | + # the USM object can be copied back into the NumPy array. |
| 154 | + if usm_mem is None: |
| 155 | + self._check_for_invalid_access_type(access_type) |
| 156 | + usm_mem = utils.as_usm_obj(val, queue=self._queue, copy=False) |
| 157 | + |
| 158 | + orig_val = val |
| 159 | + packed = False |
| 160 | + if not val.flags.c_contiguous: |
| 161 | + # If the numpy.ndarray is not C-contiguous |
| 162 | + # we pack the strided array into a packed array. |
| 163 | + # This allows us to treat the data from here on as C-contiguous. |
| 164 | + # While packing we treat the data as C-contiguous. |
| 165 | + # We store the reference of both (strided and packed) |
| 166 | + # array and during unpacking we use numpy.copyto() to copy |
| 167 | + # the data back from the packed temporary array to the |
| 168 | + # original strided array. |
| 169 | + packed_val = val.flatten(order="C") |
| 170 | + packed = True |
| 171 | + |
| 172 | + if access_type == "read_only": |
| 173 | + utils.copy_from_numpy_to_usm_obj(usm_mem, packed_val) |
| 174 | + elif access_type == "read_write": |
| 175 | + utils.copy_from_numpy_to_usm_obj(usm_mem, packed_val) |
| 176 | + # Store to the repack map |
| 177 | + self._repack_map.update( |
| 178 | + {orig_val: (usm_mem, packed_val, packed)} |
| 179 | + ) |
| 180 | + elif access_type == "write_only": |
| 181 | + self._repack_map.update( |
| 182 | + {orig_val: (usm_mem, packed_val, packed)} |
| 183 | + ) |
| 184 | + |
| 185 | + return self._unpack_array_helper( |
| 186 | + packed_val.size, |
| 187 | + packed_val.dtype.itemsize, |
| 188 | + usm_mem, |
| 189 | + packed_val.shape, |
| 190 | + packed_val.strides, |
| 191 | + packed_val.ndim, |
| 192 | + ) |
| 193 | + |
| 194 | + def _unpack_argument(self, ty, val): |
| 195 | + """ |
| 196 | + Unpack a Python object into a ctype value using Numba's |
| 197 | + type-inference machinery. |
| 198 | +
|
| 199 | + Args: |
| 200 | + ty: The data types of the kernel argument defined as in instance of |
| 201 | + numba.types. |
| 202 | + val: The value of the kernel argument. |
| 203 | +
|
| 204 | + Raises: |
| 205 | + UnsupportedKernelArgumentError: When the argument is of an |
| 206 | + unsupported type. |
| 207 | +
|
| 208 | + """ |
| 209 | + |
| 210 | + if isinstance(ty, USMNdArrayType): |
| 211 | + return self._unpack_usm_array(val) |
| 212 | + elif isinstance(ty, Array): |
| 213 | + return self._unpack_array(val) |
| 214 | + elif ty == types.int64: |
| 215 | + return ctypes.c_longlong(val) |
| 216 | + elif ty == types.uint64: |
| 217 | + return ctypes.c_ulonglong(val) |
| 218 | + elif ty == types.int32: |
| 219 | + return ctypes.c_int(val) |
| 220 | + elif ty == types.uint32: |
| 221 | + return ctypes.c_uint(val) |
| 222 | + elif ty == types.float64: |
| 223 | + return ctypes.c_double(val) |
| 224 | + elif ty == types.float32: |
| 225 | + return ctypes.c_float(val) |
| 226 | + elif ty == types.boolean: |
| 227 | + return ctypes.c_uint8(int(val)) |
| 228 | + elif ty == types.complex64: |
| 229 | + raise UnsupportedKernelArgumentError(ty, val) |
| 230 | + elif ty == types.complex128: |
| 231 | + raise UnsupportedKernelArgumentError(ty, val) |
| 232 | + else: |
| 233 | + raise UnsupportedKernelArgumentError(ty, val) |
| 234 | + |
| 235 | + def _pack_array(self): |
| 236 | + """ |
| 237 | + Copy device data back to host |
| 238 | + """ |
| 239 | + for obj in self._repack_map.keys(): |
| 240 | + |
| 241 | + (usm_mem, packed_ndarr, packed) = self._repack_map[obj] |
| 242 | + utils.copy_to_numpy_from_usm_obj(usm_mem, packed_ndarr) |
| 243 | + if packed: |
| 244 | + np.copyto(obj, packed_ndarr) |
| 245 | + |
| 246 | + def __init__(self, arg_list, argty_list, queue) -> None: |
| 247 | + """_summary_ |
| 248 | +
|
| 249 | + Args: |
| 250 | + arg_list (_type_): _description_ |
| 251 | + argty_list (_type_): _description_ |
| 252 | + queue: _description_ |
| 253 | + """ |
| 254 | + self._arg_list = arg_list |
| 255 | + self._argty_list = argty_list |
| 256 | + self._queue = queue |
| 257 | + |
| 258 | + # loop over the arg_list and generate the kernelargs list |
| 259 | + self._unpacked_args = [] |
| 260 | + for i, val in enumerate(arg_list): |
| 261 | + self._unpacked_args.append( |
| 262 | + self._unpack_argument(ty=argty_list[i], val=val) |
| 263 | + ) |
| 264 | + |
| 265 | + # Create a map for numpy arrays storing the unpacked information, as |
| 266 | + # these arrays will need to be repacked. |
| 267 | + self._repack_map = {} |
| 268 | + |
| 269 | + @property |
| 270 | + def unpacked_args(self): |
| 271 | + return self._unpacked_args |
| 272 | + |
| 273 | + @property |
| 274 | + def repacked_args(self): |
| 275 | + self._pack_array() |
| 276 | + return self._repack_map.keys() |
0 commit comments