|
2 | 2 | # |
3 | 3 | # SPDX-License-Identifier: Apache-2.0 |
4 | 4 |
|
| 5 | +from functools import lru_cache |
5 | 6 | from math import sqrt |
6 | 7 |
|
7 | 8 | import numba_dpex as dpex |
| 9 | +import numpy |
| 10 | +from dpctl import tensor as dpt |
| 11 | +from numba_dpex import NdRange |
8 | 12 |
|
9 | 13 |
|
10 | | -@dpex.kernel |
11 | | -def groupByCluster(arrayP, arrayPcluster, arrayC, num_points, num_centroids): |
12 | | - idx = dpex.get_global_id(0) |
13 | | - # if idx < num_points: # why it was removed?? |
14 | | - dtype = arrayC.dtype |
15 | | - minor_distance = dtype.type(-1) |
16 | | - for i in range(num_centroids): |
17 | | - dx = arrayP[idx, 0] - arrayC[i, 0] |
18 | | - dy = arrayP[idx, 1] - arrayC[i, 1] |
19 | | - my_distance = sqrt(dx * dx + dy * dy) |
20 | | - if minor_distance > my_distance or minor_distance == -1: |
21 | | - minor_distance = my_distance |
22 | | - arrayPcluster[idx] = i |
| 14 | +def DivUp(numerator, denominator): |
| 15 | + return (numerator + denominator - 1) // denominator |
23 | 16 |
|
24 | 17 |
|
25 | | -@dpex.kernel |
26 | | -def calCentroidsSum1(arrayCsum, arrayCnumpoint): |
27 | | - i = dpex.get_global_id(0) |
28 | | - arrayCsum[i, 0] = 0 |
29 | | - arrayCsum[i, 1] = 0 |
30 | | - arrayCnumpoint[i] = 0 |
| 18 | +def Align(value, base): |
| 19 | + return base * DivUp(value, base) |
31 | 20 |
|
32 | 21 |
|
33 | | -@dpex.kernel |
34 | | -def calCentroidsSum2(arrayP, arrayPcluster, arrayCsum, arrayCnumpoint): |
35 | | - i = dpex.get_global_id(0) |
36 | | - ci = arrayPcluster[i] |
37 | | - dpex.atomic.add(arrayCsum, (ci, 0), arrayP[i, 0]) |
38 | | - dpex.atomic.add(arrayCsum, (ci, 1), arrayP[i, 1]) |
39 | | - dpex.atomic.add(arrayCnumpoint, ci, 1) |
| 22 | +@lru_cache(maxsize=1) |
| 23 | +def getGroupByCluster( # noqa: C901 |
| 24 | + dims, num_centroids, dtyp, WorkPI, local_size_ |
| 25 | +): |
| 26 | + local_copies = min(4, max(1, DivUp(local_size_, num_centroids))) |
| 27 | + |
| 28 | + @dpex.kernel |
| 29 | + def groupByCluster( |
| 30 | + arrayP, arrayPcluster, arrayC, NewCentroids, NewCount, last |
| 31 | + ): |
| 32 | + numpoints = arrayP.shape[0] |
| 33 | + localCentroids = dpex.local.array((dims, num_centroids), dtype=dtyp) |
| 34 | + localNewCentroids = dpex.local.array( |
| 35 | + (local_copies, dims, num_centroids), dtype=dtyp |
| 36 | + ) |
| 37 | + localNewCount = dpex.local.array( |
| 38 | + (local_copies, num_centroids), dtype=dpt.int32 |
| 39 | + ) |
40 | 40 |
|
| 41 | + grid = dpex.get_group_id(0) |
| 42 | + lid = dpex.get_local_id(0) |
| 43 | + local_size = dpex.get_local_size(0) |
41 | 44 |
|
42 | | -@dpex.kernel |
43 | | -def updateCentroids(arrayC, arrayCsum, arrayCnumpoint, num_centroids): |
44 | | - i = dpex.get_global_id(0) |
45 | | - dtype = arrayC.dtype |
46 | | - arrayC[i, 0] = arrayCsum[i, 0] / dtype.type(arrayCnumpoint[i]) |
47 | | - arrayC[i, 1] = arrayCsum[i, 1] / dtype.type(arrayCnumpoint[i]) |
| 45 | + for i in range(lid, num_centroids * dims, local_size): |
| 46 | + localCentroids[i % dims, i // dims] = arrayC[i // dims, i % dims] |
| 47 | + for lc in range(local_copies): |
| 48 | + localNewCentroids[lc, i % dims, i // dims] = 0 |
48 | 49 |
|
| 50 | + for c in range(lid, num_centroids, local_size): |
| 51 | + for lc in range(local_copies): |
| 52 | + localNewCount[lc, c] = 0 |
49 | 53 |
|
50 | | -@dpex.kernel |
51 | | -def copy_arrayC(arrayC, arrayP): |
52 | | - i = dpex.get_global_id(0) |
53 | | - arrayC[i, 0] = arrayP[i, 0] |
54 | | - arrayC[i, 1] = arrayP[i, 1] |
| 54 | + dpex.barrier(dpex.LOCAL_MEM_FENCE) |
55 | 55 |
|
| 56 | + for i in range(WorkPI): |
| 57 | + point_id = grid * WorkPI * local_size + i * local_size + lid |
| 58 | + if point_id < numpoints: |
| 59 | + localP = dpex.private.array(dims, dtyp) |
| 60 | + for d in range(dims): |
| 61 | + localP[d] = arrayP[point_id, d] |
56 | 62 |
|
57 | | -def kmeans_kernel( |
58 | | - arrayP, |
59 | | - arrayPcluster, |
60 | | - arrayC, |
61 | | - arrayCsum, |
62 | | - arrayCnumpoint, |
63 | | - niters, |
64 | | - num_points, |
65 | | - num_centroids, |
66 | | -): |
67 | | - copy_arrayC[num_centroids,](arrayC, arrayP) |
| 63 | + minimal_distance = dtyp.type(dpt.inf) |
| 64 | + nearest_centroid = int(0) |
| 65 | + for c in range(num_centroids): |
| 66 | + sq_sum = dtyp.type(0) |
| 67 | + for d in range(dims): |
| 68 | + sq_sum += (localP[d] - localCentroids[d, c]) ** 2 |
68 | 69 |
|
69 | | - for i in range(niters): |
70 | | - groupByCluster[num_points,]( |
71 | | - arrayP, arrayPcluster, arrayC, num_points, num_centroids |
72 | | - ) |
| 70 | + if sq_sum < minimal_distance: |
| 71 | + nearest_centroid = c |
| 72 | + minimal_distance = sq_sum |
73 | 73 |
|
74 | | - calCentroidsSum1[num_centroids,](arrayCsum, arrayCnumpoint) |
| 74 | + lc = lid % local_copies |
| 75 | + for d in range(dims): |
| 76 | + dpex.atomic.add( |
| 77 | + localNewCentroids, (lc, d, nearest_centroid), localP[d] |
| 78 | + ) |
75 | 79 |
|
76 | | - calCentroidsSum2[num_points,]( |
77 | | - arrayP, arrayPcluster, arrayCsum, arrayCnumpoint |
78 | | - ) |
| 80 | + dpex.atomic.add(localNewCount, (lc, nearest_centroid), 1) |
79 | 81 |
|
80 | | - updateCentroids[num_centroids,]( |
81 | | - arrayC, arrayCsum, arrayCnumpoint, num_centroids |
82 | | - ) |
| 82 | + if last: |
| 83 | + arrayPcluster[point_id] = nearest_centroid |
| 84 | + |
| 85 | + dpex.barrier(dpex.LOCAL_MEM_FENCE) |
| 86 | + |
| 87 | + for i in range(lid, num_centroids * dims, local_size): |
| 88 | + local_centroid_d = dtyp.type(0) |
| 89 | + for lc in range(local_copies): |
| 90 | + local_centroid_d += localNewCentroids[lc, i % dims, i // dims] |
| 91 | + |
| 92 | + dpex.atomic.add( |
| 93 | + NewCentroids, |
| 94 | + (i // dims, i % dims), |
| 95 | + local_centroid_d, |
| 96 | + ) |
| 97 | + |
| 98 | + for c in range(lid, num_centroids, local_size): |
| 99 | + local_centroid_npoints = dpt.int32.type(0) |
| 100 | + for lc in range(local_copies): |
| 101 | + local_centroid_npoints += localNewCount[lc, c] |
| 102 | + |
| 103 | + dpex.atomic.add(NewCount, c, local_centroid_npoints) |
| 104 | + |
| 105 | + return groupByCluster |
| 106 | + |
| 107 | + |
| 108 | +@lru_cache(maxsize=1) |
| 109 | +def getUpdateCentroids(dims, num_centroids, dtyp, local_size_): |
| 110 | + @dpex.kernel |
| 111 | + def updateCentroids(diff, arrayC, arrayCnumpoint, NewCentroids, NewCount): |
| 112 | + lid = dpex.get_local_id(0) |
| 113 | + local_size = dpex.get_local_size(0) |
| 114 | + |
| 115 | + local_distance = dpex.local.array(local_size_, dtype=dtyp) |
| 116 | + |
| 117 | + max_distance = dtyp.type(0) |
| 118 | + for c in range(lid, num_centroids, local_size): |
| 119 | + numpoints = NewCount[c] |
| 120 | + arrayCnumpoint[c] = numpoints |
| 121 | + NewCount[c] = 0 |
| 122 | + distance = dtyp.type(0) |
| 123 | + |
| 124 | + for d in range(dims): |
| 125 | + d0 = arrayC[c, d] |
| 126 | + d1 = NewCentroids[c, d] |
| 127 | + NewCentroids[c, d] = 0 |
| 128 | + |
| 129 | + d1 = d1 / dtyp.type(numpoints) if numpoints > 0 else d0 |
| 130 | + arrayC[c, d] = d1 |
| 131 | + |
| 132 | + distance += d0 * d0 - d1 * d1 |
83 | 133 |
|
84 | | - return arrayC, arrayCsum, arrayCnumpoint |
| 134 | + max_distance = max(max_distance, distance) |
| 135 | + local_distance[c] = max_distance |
85 | 136 |
|
| 137 | + dpex.barrier(dpex.LOCAL_MEM_FENCE) |
86 | 138 |
|
87 | | -def kmeans( |
| 139 | + if lid == 0: |
| 140 | + for c in range(local_size): |
| 141 | + max_distance = max(max_distance, local_distance[c]) |
| 142 | + |
| 143 | + diff[0] = sqrt(max_distance) |
| 144 | + |
| 145 | + return updateCentroids |
| 146 | + |
| 147 | + |
| 148 | +@lru_cache(maxsize=1) |
| 149 | +def getUpdateLabels(dims, num_centroids, dtyp, WorkPI): |
| 150 | + @dpex.kernel |
| 151 | + def updateLabels(arrayP, arrayPcluster, arrayC): |
| 152 | + numpoints = arrayP.shape[0] |
| 153 | + localCentroids = dpex.local.array((dims, num_centroids), dtype=dtyp) |
| 154 | + |
| 155 | + grid = dpex.get_group_id(0) |
| 156 | + lid = dpex.get_local_id(0) |
| 157 | + local_size = dpex.get_local_size(0) |
| 158 | + |
| 159 | + for i in range(lid, num_centroids * dims, local_size): |
| 160 | + localCentroids[i % dims, i // dims] = arrayC[i // dims, i % dims] |
| 161 | + |
| 162 | + dpex.barrier(dpex.LOCAL_MEM_FENCE) |
| 163 | + |
| 164 | + for i in range(WorkPI): |
| 165 | + point_id = grid * WorkPI * local_size + i * local_size + lid |
| 166 | + if point_id < numpoints: |
| 167 | + localP = dpex.private.array(dims, dtyp) |
| 168 | + for d in range(dims): |
| 169 | + localP[d] = arrayP[point_id, d] |
| 170 | + |
| 171 | + minimal_distance = dtyp.type(dpt.inf) |
| 172 | + nearest_centroid = int(0) |
| 173 | + for c in range(num_centroids): |
| 174 | + sq_sum = dtyp.type(0) |
| 175 | + for d in range(dims): |
| 176 | + sq_sum += (localP[d] - localCentroids[d, c]) ** 2 |
| 177 | + |
| 178 | + if sq_sum < minimal_distance: |
| 179 | + nearest_centroid = c |
| 180 | + minimal_distance = sq_sum |
| 181 | + |
| 182 | + arrayPcluster[point_id] = nearest_centroid |
| 183 | + |
| 184 | + return updateLabels |
| 185 | + |
| 186 | + |
| 187 | +@lru_cache(maxsize=1) |
| 188 | +def getKernels(dims, num_centroids, dtyp, WorkPI, local_size_): |
| 189 | + groupByCluster = getGroupByCluster( |
| 190 | + dims, num_centroids, dtyp, WorkPI, local_size_ |
| 191 | + ) |
| 192 | + updateCentroids = getUpdateCentroids(dims, num_centroids, dtyp, local_size_) |
| 193 | + updateLabels = getUpdateLabels(dims, num_centroids, dtyp, WorkPI) |
| 194 | + |
| 195 | + return groupByCluster, updateCentroids, updateLabels |
| 196 | + |
| 197 | + |
| 198 | +def kmeans_kernel( |
88 | 199 | arrayP, |
89 | | - arrayPclusters, |
| 200 | + arrayPcluster, |
90 | 201 | arrayC, |
91 | | - arrayCsum, |
92 | 202 | arrayCnumpoint, |
93 | 203 | niters, |
94 | | - npoints, |
95 | | - ndims, |
96 | | - ncentroids, |
97 | 204 | ): |
98 | | - arrayC, arrayCsum, arrayCnumpoint = kmeans_kernel( |
99 | | - arrayP, |
100 | | - arrayPclusters, |
101 | | - arrayC, |
102 | | - arrayCsum, |
103 | | - arrayCnumpoint, |
104 | | - niters, |
105 | | - npoints, |
106 | | - ncentroids, |
| 205 | + num_points = arrayP.shape[0] |
| 206 | + num_centroids = arrayC.shape[0] |
| 207 | + dims = arrayC.shape[1] |
| 208 | + device = arrayP.device |
| 209 | + |
| 210 | + NewCentroids = dpt.zeros_like(arrayC._array_obj) |
| 211 | + NewCount = dpt.zeros_like(arrayCnumpoint._array_obj) |
| 212 | + diff = dpt.zeros(1, dtype=arrayP.dtype, device=device) |
| 213 | + diff_host = dpt.inf |
| 214 | + |
| 215 | + tolerance = 0 |
| 216 | + WorkPI = 8 |
| 217 | + local_size = min(1024, device.sycl_device.max_work_group_size) |
| 218 | + global_size = Align(DivUp(num_points, WorkPI), local_size) |
| 219 | + |
| 220 | + groupByCluster, updateCentroids, updateLabels = getKernels( |
| 221 | + dims, num_centroids, arrayP.dtype, WorkPI, local_size |
107 | 222 | ) |
| 223 | + |
| 224 | + for i in range(niters): |
| 225 | + last = i == (niters - 1) |
| 226 | + if diff_host < tolerance: |
| 227 | + updateLabels[NdRange((global_size,), (local_size,))]( |
| 228 | + arrayP, arrayPcluster, arrayC |
| 229 | + ) |
| 230 | + break |
| 231 | + |
| 232 | + groupByCluster[NdRange((global_size,), (local_size,))]( |
| 233 | + arrayP, arrayPcluster, arrayC, NewCentroids, NewCount, last |
| 234 | + ) |
| 235 | + |
| 236 | + update_centroid_size = min(num_centroids, local_size) |
| 237 | + updateCentroids[ |
| 238 | + NdRange((update_centroid_size,), (update_centroid_size,)) |
| 239 | + ](diff, arrayC, arrayCnumpoint, NewCentroids, NewCount) |
| 240 | + diff_host = dpt.asnumpy(diff)[0] |
| 241 | + |
| 242 | + |
| 243 | +def kmeans(arrayP, arrayPclusters, arrayC, arrayCnumpoint, niters): |
| 244 | + kmeans_kernel(arrayP, arrayPclusters, arrayC, arrayCnumpoint, niters) |
0 commit comments