@@ -391,17 +391,7 @@ def test_to_numpy_pandas_numeric_with_na(dtype, expected_dtype):
391391 "U10" ,
392392 "string[python]" ,
393393 pytest .param ("string[pyarrow]" , marks = skip_if_no (package = "pyarrow" )),
394- pytest .param (
395- "string[pyarrow_numpy]" ,
396- marks = [
397- skip_if_no (package = "pyarrow" ),
398- # TODO(pandas>=2.1): Remove the skipif marker for pandas<2.1.
399- pytest .mark .skipif (
400- Version (pd .__version__ ) < Version ("2.1" ),
401- reason = "string[pyarrow_numpy] was added since pandas 2.1" ,
402- ),
403- ],
404- ),
394+ pytest .param ("string[pyarrow_numpy]" , marks = skip_if_no (package = "pyarrow" )),
405395 ],
406396)
407397def test_to_numpy_pandas_string (dtype ):
@@ -536,12 +526,7 @@ def test_to_numpy_pandas_datetime(dtype, expected_dtype):
536526
537527 # Convert to UTC if the dtype is timezone-aware
538528 if "," in str (dtype ): # A hacky way to decide if the dtype is timezone-aware.
539- # TODO(pandas>=2.1): Simplify the if-else statement.
540- if Version (pd .__version__ ) < Version ("2.1" ) and dtype .startswith ("timestamp" ):
541- # pandas 2.0 doesn't have the dt.tz_convert method for pyarrow.Timestamp.
542- series = pd .to_datetime (series , utc = True )
543- else :
544- series = series .dt .tz_convert ("UTC" )
529+ series = series .dt .tz_convert ("UTC" )
545530 # Remove time zone information and preserve local time.
546531 expected_series = series .dt .tz_localize (tz = None )
547532 npt .assert_array_equal (result , np .array (expected_series , dtype = expected_dtype ))
0 commit comments