@@ -231,7 +231,7 @@ other half of observations indexed with :math:`i \in I`
231231 scale_color_manual(name='',
232232 breaks=c("Non-orthogonal ML", "N(0, 1)"),
233233 values=c("Non-orthogonal ML"="dark blue", "N(0, 1)"='black')) +
234- scale_fill_manual(name='',,
234+ scale_fill_manual(name='',
235235 breaks=c("Non-orthogonal ML", "N(0, 1)"),
236236 values=c("Non-orthogonal ML"="dark blue", "N(0, 1)"=NA)) +
237237 xlim(c(-6.0, 6.0)) + xlab("") + ylab("") + theme_minimal()
@@ -355,7 +355,7 @@ orthogonalized regressor :math:`V = D - m(X)`. We then use the final estimate
355355 scale_color_manual(name='',
356356 breaks=c("Double ML (no sample splitting)", "N(0, 1)"),
357357 values=c("Double ML (no sample splitting)"="dark orange", "N(0, 1)"='black')) +
358- scale_fill_manual(name='',,
358+ scale_fill_manual(name='',
359359 breaks=c("Double ML (no sample splitting)", "N(0, 1)"),
360360 values=c("Double ML (no sample splitting)"="dark orange", "N(0, 1)"=NA)) +
361361 xlim(c(-6.0, 6.0)) + xlab("") + ylab("") + theme_minimal()
@@ -459,7 +459,7 @@ Cross-fitting performs well empirically because the entire sample can be used fo
459459 scale_color_manual(name='',
460460 breaks=c("Double ML with cross-fitting", "N(0, 1)"),
461461 values=c("Double ML with cross-fitting"="dark green", "N(0, 1)"='black')) +
462- scale_fill_manual(name='',,
462+ scale_fill_manual(name='',
463463 breaks=c("Double ML with cross-fitting", "N(0, 1)"),
464464 values=c("Double ML with cross-fitting"="dark green", "N(0, 1)"=NA)) +
465465 xlim(c(-6.0, 6.0)) + xlab("") + ylab("") + theme_minimal()
0 commit comments