Skip to content

Commit 7a9b807

Browse files
committed
update sensitivity guides to remove warnings
1 parent 004da39 commit 7a9b807

File tree

2 files changed

+6
-2
lines changed

2 files changed

+6
-2
lines changed

doc/guide/sensitivity/apo_sensitivity.rst

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,7 @@ This implies the following representations
1414
\alpha(W) &= \frac{1\lbrace D = d\rbrace }{m(X)}\cdot\mathbb{E}[\omega(Y,D,X)|X].
1515
1616
.. note::
17+
1718
In the :ref:`irm-model` the form and interpretation of ``cf_y`` only depends on the conditional expectation :math:`\mathbb{E}[Y|D,X]`.
1819

1920
- ``cf_y`` has the interpretation as the *nonparametric partial* :math:`R^2` *of* :math:`A` *with* :math:`Y` *given* :math:`(D,X)`
@@ -37,6 +38,7 @@ This implies the following representations
3738
\frac{\mathbb{E}\left[\frac{1}{P(D=d|X,A)}\mathbb{E}[\omega(Y,D,X)|X,A]^2\right] - \mathbb{E}\left[\frac{1}{P(D=d|X)}\mathbb{E}[\omega(Y,D,X)|X]^2\right]}{\mathbb{E}\left[\frac{1}{P(D=d|X,A)}\mathbb{E}[\omega(Y,D,X)|X,A]^2\right]}
3839
3940
which has a interpretation as the *relative weighted change in inverse propensity weights*.
41+
4042
The ``nuisance_elements`` are then computed with plug-in versions according to the general :ref:`sensitivity_implementation`.
4143
The default weights are set to one
4244

@@ -50,4 +52,4 @@ whereas
5052
5153
\bar{\omega}(X) := \mathbb{E}[\omega(Y,D,X)|X],
5254
53-
have to be supplied for weights which depend on :math:`Y` or :math:`D`.
55+
have to be supplied for weights which depend on :math:`Y` or :math:`D`.

doc/guide/sensitivity/irm_sensitivity.rst

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,7 @@ This implies the following representations
1515
1616
1717
.. note::
18+
1819
In the :ref:`irm-model` with for the ATE (weights equal to :math:`1`), the form and interpretation of ``cf_y`` is the same as in the :ref:`plr-model`.
1920

2021
- ``cf_y`` has the interpretation as the *nonparametric partial* :math:`R^2` *of* :math:`A` *with* :math:`Y` *given* :math:`(D,X)`
@@ -50,6 +51,7 @@ This implies the following representations
5051
\frac{\mathbb{E}\left[\frac{\mathbb{E}[\omega(Y,D,X)|X,A]^2}{P(D=1|X,A)(1-P(D=1|X,A))}\right] - \mathbb{E}\left[\frac{\mathbb{E}[\omega(Y,D,X)|X]^2}{P(D=1|X)(1-P(D=1|X))}\right]}{\mathbb{E}\left[\frac{\mathbb{E}[\omega(Y,D,X)|X,A]^2}{P(D=1|X,A)(1-P(D=1|X,A))}\right]}
5152
5253
which has a interpretation as the *relative weighted gain in average conditional precision*.
54+
5355
The ``nuisance_elements`` are then computed with plug-in versions according to the general :ref:`sensitivity_implementation`.
5456
For ``score='ATE'``, the weights are set to one
5557

@@ -67,4 +69,4 @@ such that
6769

6870
.. math::
6971
70-
\mathbb{E}[\omega(Y,D,X)|X] = \frac{m(X)}{\mathbb{E}[D]}.
72+
\mathbb{E}[\omega(Y,D,X)|X] = \frac{m(X)}{\mathbb{E}[D]}.

0 commit comments

Comments
 (0)