|
113 | 113 | "lgr::get_logger(\"mlr3\")$set_threshold(\"warn\")\n", |
114 | 114 | "\n", |
115 | 115 | "learner_lasso = lrn(\"regr.cv_glmnet\", s=\"lambda.min\")\n", |
116 | | - "ml_g_lasso = learner_lasso$clone()\n", |
| 116 | + "ml_l_lasso = learner_lasso$clone()\n", |
117 | 117 | "ml_m_lasso = learner_lasso$clone()\n", |
118 | | - "class(ml_g_lasso)" |
| 118 | + "class(ml_l_lasso)" |
119 | 119 | ] |
120 | 120 | }, |
121 | 121 | { |
|
125 | 125 | "metadata": {}, |
126 | 126 | "outputs": [], |
127 | 127 | "source": [ |
128 | | - "# Random forest learner for nuisance part ml_g\n", |
| 128 | + "# Random forest learner for nuisance part ml_l\n", |
129 | 129 | "learner_forest_regr = lrn(\"regr.ranger\",\n", |
130 | 130 | " num.trees=500, mtry=floor(sqrt(dim_x)),\n", |
131 | 131 | " max.depth=5, min.node.size=2)\n", |
|
136 | 136 | " mtry=floor(sqrt(dim_x)),\n", |
137 | 137 | " max.depth=5, min.node.size=2)\n", |
138 | 138 | "\n", |
139 | | - "ml_g_forest = learner_forest_regr$clone()\n", |
| 139 | + "ml_l_forest = learner_forest_regr$clone()\n", |
140 | 140 | "ml_m_forest = learner_forest_classif$clone()\n", |
141 | | - "class(ml_g_forest)" |
| 141 | + "class(ml_l_forest)" |
142 | 142 | ] |
143 | 143 | }, |
144 | 144 | { |
|
158 | 158 | "source": [ |
159 | 159 | "set.seed(123)\n", |
160 | 160 | "obj_dml_plr_sim = DoubleMLPLR$new(dml_data_sim,\n", |
161 | | - " ml_g=ml_g_lasso,\n", |
| 161 | + " ml_l=ml_l_lasso,\n", |
162 | 162 | " ml_m=ml_m_lasso)\n", |
163 | 163 | "obj_dml_plr_sim$fit()\n", |
164 | 164 | "print(obj_dml_plr_sim)" |
|
173 | 173 | "source": [ |
174 | 174 | "set.seed(123)\n", |
175 | 175 | "obj_dml_plr_bonus = DoubleMLPLR$new(dml_data_bonus,\n", |
176 | | - " ml_g=ml_g_forest,\n", |
| 176 | + " ml_l=ml_l_forest,\n", |
177 | 177 | " ml_m=ml_m_forest)\n", |
178 | 178 | "obj_dml_plr_bonus$fit()\n", |
179 | 179 | "print(obj_dml_plr_bonus)" |
|
205 | 205 | "# Lasso learner\n", |
206 | 206 | "library(mlr3pipelines)\n", |
207 | 207 | "pipe_lasso = po(lrn(\"regr.cv_glmnet\"), s = \"lambda.min\")\n", |
208 | | - "ml_g_lasso_pipe = as_learner(pipe_lasso)\n", |
| 208 | + "ml_l_lasso_pipe = as_learner(pipe_lasso)\n", |
209 | 209 | "ml_m_lasso_pipe = as_learner(pipe_lasso)\n", |
210 | 210 | "\n", |
211 | 211 | "# Class of the lasso learner\n", |
212 | | - "class(ml_g_lasso_pipe)" |
| 212 | + "class(ml_l_lasso_pipe)" |
213 | 213 | ] |
214 | 214 | }, |
215 | 215 | { |
|
219 | 219 | "metadata": {}, |
220 | 220 | "outputs": [], |
221 | 221 | "source": [ |
222 | | - "# Random forest learner for nuisance part ml_g\n", |
| 222 | + "# Random forest learner for nuisance part ml_l\n", |
223 | 223 | "pipe_forest_regr = po(lrn(\"regr.ranger\"),\n", |
224 | 224 | " num.trees=500, mtry=floor(sqrt(dim_x)),\n", |
225 | 225 | " max.depth=5, min.node.size=2)\n", |
|
230 | 230 | " mtry=floor(sqrt(dim_x)),\n", |
231 | 231 | " max.depth=5, min.node.size=2)\n", |
232 | 232 | "\n", |
233 | | - "ml_g_forest_pipe = as_learner(pipe_forest_regr)\n", |
| 233 | + "ml_l_forest_pipe = as_learner(pipe_forest_regr)\n", |
234 | 234 | "ml_m_forest_pipe = as_learner(pipe_forest_classif)\n", |
235 | 235 | "\n", |
236 | 236 | "# Class of the random forest learners\n", |
237 | | - "class(ml_g_forest_pipe)\n", |
| 237 | + "class(ml_l_forest_pipe)\n", |
238 | 238 | "class(ml_m_forest_pipe)" |
239 | 239 | ] |
240 | 240 | }, |
|
255 | 255 | "source": [ |
256 | 256 | "set.seed(123)\n", |
257 | 257 | "obj_dml_plr_sim_pipe = DoubleMLPLR$new(dml_data_sim,\n", |
258 | | - " ml_g=ml_g_lasso_pipe,\n", |
| 258 | + " ml_l=ml_l_lasso_pipe,\n", |
259 | 259 | " ml_m=ml_m_lasso_pipe)\n", |
260 | 260 | "obj_dml_plr_sim_pipe$fit()\n", |
261 | 261 | "print(obj_dml_plr_sim_pipe)" |
|
270 | 270 | "source": [ |
271 | 271 | "set.seed(123)\n", |
272 | 272 | "obj_dml_plr_bonus_pipe = DoubleMLPLR$new(dml_data_bonus,\n", |
273 | | - " ml_g=ml_g_forest_pipe,\n", |
| 273 | + " ml_l=ml_l_forest_pipe,\n", |
274 | 274 | " ml_m=ml_m_forest_pipe)\n", |
275 | 275 | "obj_dml_plr_bonus_pipe$fit()\n", |
276 | 276 | "print(obj_dml_plr_bonus_pipe)" |
|
410 | 410 | "# Initiate new DoubleML object and estimate with graph learner\n", |
411 | 411 | "set.seed(123)\n", |
412 | 412 | "obj_dml_plr_sim_pipe_ensemble = DoubleMLPLR$new(dml_data_sim,\n", |
413 | | - " ml_g = ensemble_pipe_regr,\n", |
| 413 | + " ml_l = ensemble_pipe_regr,\n", |
414 | 414 | " ml_m = ensemble_pipe_regr)\n", |
415 | 415 | "obj_dml_plr_sim_pipe_ensemble$fit()\n", |
416 | 416 | "print(obj_dml_plr_sim_pipe_ensemble)" |
|
425 | 425 | "source": [ |
426 | 426 | "set.seed(123)\n", |
427 | 427 | "obj_dml_plr_bonus_pipe_ensemble = DoubleMLPLR$new(dml_data_bonus,\n", |
428 | | - " ml_g = ensemble_pipe_regr,\n", |
| 428 | + " ml_l = ensemble_pipe_regr,\n", |
429 | 429 | " ml_m = ensemble_pipe_classif)\n", |
430 | 430 | "obj_dml_plr_bonus_pipe_ensemble$fit()\n", |
431 | 431 | "print(obj_dml_plr_bonus_pipe_ensemble)" |
|
495 | 495 | "\n", |
496 | 496 | "set.seed(123)\n", |
497 | 497 | "obj_dml_plr_bonus_pipe = DoubleMLPLR$new(dml_data_bonus,\n", |
498 | | - " ml_g=ml_g_forest,\n", |
| 498 | + " ml_l=ml_l_forest,\n", |
499 | 499 | " ml_m=stacklrn)\n", |
500 | 500 | "obj_dml_plr_bonus_pipe$fit()\n", |
501 | 501 | "print(obj_dml_plr_bonus_pipe)" |
|
607 | 607 | "source": [ |
608 | 608 | "set.seed(123)\n", |
609 | 609 | "obj_dml_plr_bonus_pipe2 = DoubleMLPLR$new(dml_data_bonus,\n", |
610 | | - " ml_g=ml_g_lasso,\n", |
| 610 | + " ml_l=ml_l_lasso,\n", |
611 | 611 | " ml_m=glrn)\n", |
612 | 612 | "obj_dml_plr_bonus_pipe2$fit()\n", |
613 | 613 | "print(obj_dml_plr_bonus_pipe2)" |
|
640 | 640 | "source": [ |
641 | 641 | "set.seed(123)\n", |
642 | 642 | "obj_dml_plr_bonus_pipe3 = DoubleMLPLR$new(dml_data_bonus,\n", |
643 | | - " ml_g=ml_g_lasso,\n", |
| 643 | + " ml_l=ml_l_lasso,\n", |
644 | 644 | " ml_m=glrn)\n", |
645 | 645 | "obj_dml_plr_bonus_pipe3$fit()\n", |
646 | 646 | "print(obj_dml_plr_bonus_pipe3)" |
|
711 | 711 | "tune_settings = list(terminator = trm(\"evals\", n_evals = 10),\n", |
712 | 712 | " algorithm = tnr(\"grid_search\", resolution = 10),\n", |
713 | 713 | " rsmp_tune = rsmp(\"cv\", folds = 5),\n", |
714 | | - " measure = list(\"ml_g\" = msr(\"regr.mse\"),\n", |
| 714 | + " measure = list(\"ml_l\" = msr(\"regr.mse\"),\n", |
715 | 715 | " \"ml_m\" = msr(\"regr.mse\")))" |
716 | 716 | ] |
717 | 717 | }, |
|
725 | 725 | "# Initiate new DoubleML object and execute tuning with graph learner\n", |
726 | 726 | "set.seed(123)\n", |
727 | 727 | "obj_dml_plr_sim_pipe_tune = DoubleMLPLR$new(dml_data_sim,\n", |
728 | | - " ml_g=glrn_lasso,\n", |
| 728 | + " ml_l=glrn_lasso,\n", |
729 | 729 | " ml_m=glrn_lasso)\n", |
730 | | - "obj_dml_plr_sim_pipe_tune$tune(param_set = list(\"ml_g\" = par_grids,\n", |
| 730 | + "obj_dml_plr_sim_pipe_tune$tune(param_set = list(\"ml_l\" = par_grids,\n", |
731 | 731 | " \"ml_m\" = par_grids),\n", |
732 | 732 | " tune_settings=tune_settings)" |
733 | 733 | ] |
|
786 | 786 | "mimetype": "text/x-r-source", |
787 | 787 | "name": "R", |
788 | 788 | "pygments_lexer": "r", |
789 | | - "version": "3.6.1" |
| 789 | + "version": "4.0.4" |
790 | 790 | } |
791 | 791 | }, |
792 | 792 | "nbformat": 4, |
|
0 commit comments