Skip to content

Commit fbf04d5

Browse files
committed
Run commands to improve format
1 parent aa4aea7 commit fbf04d5

File tree

2 files changed

+37
-22
lines changed

2 files changed

+37
-22
lines changed

src/aspire/denoising/denoiser_cov2d.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,9 +42,7 @@ def denoise(self, covar_opt=None, batch_size=512):
4242

4343
# Initialize the rotationally invariant covariance matrix of 2D images
4444
# A fixed batch size is used to go through each image
45-
self.cov2d = BatchedRotCov2D(
46-
self.src, self.basis, batch_size=batch_size
47-
)
45+
self.cov2d = BatchedRotCov2D(self.src, self.basis, batch_size=batch_size)
4846

4947
default_opt = {
5048
"shrinker": "frobenius_norm",

tests/test_covar2d_denoiser.py

Lines changed: 36 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,8 @@
33
import numpy as np
44

55
from aspire.basis.ffb_2d import FFBBasis2D
6-
from aspire.estimation.covar2d import BatchedRotCov2D
76
from aspire.denoising.denoiser_cov2d import DenoiserCov2D
7+
from aspire.estimation.covar2d import BatchedRotCov2D
88
from aspire.source.simulation import Simulation
99
from aspire.utils.filters import RadialCTFFilter, ScalarFilter
1010

@@ -24,11 +24,14 @@ def setUp(self):
2424
defocus_max = 2.5e4
2525
defocus_ct = 7
2626

27-
filters = [RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
28-
for d in np.linspace(defocus_min, defocus_max, defocus_ct)]
27+
filters = [
28+
RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
29+
for d in np.linspace(defocus_min, defocus_max, defocus_ct)
30+
]
2931

30-
src = Simulation(L, n, unique_filters=filters, dtype=self.dtype,
31-
noise_filter=noise_filter)
32+
src = Simulation(
33+
L, n, unique_filters=filters, dtype=self.dtype, noise_filter=noise_filter
34+
)
3235

3336
basis = FFBBasis2D((L, L), dtype=self.dtype)
3437

@@ -44,15 +47,20 @@ def setUp(self):
4447
self.denoised_src = self.denoisor.denoise(batch_size=7)
4548
self.src = src
4649
self.basis = basis
47-
self.covar_est_opt = {'shrinker': 'frobenius_norm', 'verbose': 0,
48-
'max_iter': 250, 'iter_callback': [],
49-
'store_iterates': False, 'rel_tolerance': 1e-12,
50-
'precision': self.dtype}
50+
self.covar_est_opt = {
51+
"shrinker": "frobenius_norm",
52+
"verbose": 0,
53+
"max_iter": 250,
54+
"iter_callback": [],
55+
"store_iterates": False,
56+
"rel_tolerance": 1e-12,
57+
"precision": self.dtype,
58+
}
5159

5260
def blk_diag_allclose(self, blk_diag_a, blk_diag_b, atol=1e-8):
5361
close = True
5462
for blk_a, blk_b in zip(blk_diag_a, blk_diag_b):
55-
close = (close and np.allclose(blk_a, blk_b, atol=atol))
63+
close = close and np.allclose(blk_a, blk_b, atol=atol)
5664
return close
5765

5866
def testMean(self):
@@ -62,22 +70,31 @@ def testMean(self):
6270
self.assertTrue(np.allclose(mean_denoisor, mean_bcov2d))
6371

6472
def testCovar(self):
65-
covar_bcov2d = self.bcov2d.get_covar(noise_var=self.noise_var,
66-
covar_est_opt=self.covar_est_opt)
73+
covar_bcov2d = self.bcov2d.get_covar(
74+
noise_var=self.noise_var, covar_est_opt=self.covar_est_opt
75+
)
6776
covar_denoisor = self.denoisor.covar_est
6877

6978
self.assertTrue(self.blk_diag_allclose(covar_denoisor, covar_bcov2d))
7079

7180
def testCWFCeoffs(self):
7281
mean_bcov2d = self.bcov2d.get_mean()
73-
covar_bcov2d = self.bcov2d.get_covar(noise_var=self.noise_var,
74-
covar_est_opt=self.covar_est_opt)
82+
covar_bcov2d = self.bcov2d.get_covar(
83+
noise_var=self.noise_var, covar_est_opt=self.covar_est_opt
84+
)
7585
coeffs_bcov2d = self.bcov2d.get_cwf_coeffs(
76-
self.coeff, self.ctf_fb, self.ctf_idx,
77-
mean_coeff=mean_bcov2d, covar_coeff=covar_bcov2d,
78-
noise_var=self.noise_var)
86+
self.coeff,
87+
self.ctf_fb,
88+
self.ctf_idx,
89+
mean_coeff=mean_bcov2d,
90+
covar_coeff=covar_bcov2d,
91+
noise_var=self.noise_var,
92+
)
7993
imgs_denoised_bcov2d = self.basis.evaluate(coeffs_bcov2d)
8094
imgs_denoised_denoisor = self.denoised_src.images(0, self.src.n)
8195

82-
self.assertTrue(np.allclose(imgs_denoised_bcov2d.asnumpy(),
83-
imgs_denoised_denoisor.asnumpy()))
96+
self.assertTrue(
97+
np.allclose(
98+
imgs_denoised_bcov2d.asnumpy(), imgs_denoised_denoisor.asnumpy()
99+
)
100+
)

0 commit comments

Comments
 (0)