1+ /*
2+ * Licensed to the Apache Software Foundation (ASF) under one or more
3+ * contributor license agreements. See the NOTICE file distributed with
4+ * this work for additional information regarding copyright ownership.
5+ * The ASF licenses this file to You under the Apache License, Version 2.0
6+ * (the "License"); you may not use this file except in compliance with
7+ * the License. You may obtain a copy of the License at
8+ *
9+ * http://www.apache.org/licenses/LICENSE-2.0
10+ *
11+ * Unless required by applicable law or agreed to in writing, software
12+ * distributed under the License is distributed on an "AS IS" BASIS,
13+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14+ * See the License for the specific language governing permissions and
15+ * limitations under the License.
16+ */
17+
18+ package org .apache .spark .mllib .linalg
19+
20+ import org .apache .spark .annotation .Experimental
21+ import breeze .linalg .{DenseMatrix => BDM , DenseVector => BDV }
22+ import org .netlib .util .{intW , doubleW }
23+ import com .github .fommil .netlib .ARPACK
24+
25+ /**
26+ * :: Experimental ::
27+ * Represents eigenvalue decomposition factors.
28+ */
29+ @ Experimental
30+ case class EigenValueDecomposition [VType ](s : Vector , V : VType )
31+
32+ object EigenValueDecomposition {
33+ /**
34+ * Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK.
35+ * The caller needs to ensure that the input matrix is real symmetric. This function requires
36+ * memory for `n*(4*k+4)` doubles.
37+ *
38+ * @param mul a function that multiplies the symmetric matrix with a Vector.
39+ * @param n dimension of the square matrix (maximum Int.MaxValue).
40+ * @param k number of leading eigenvalues required.
41+ * @param tol tolerance of the eigs computation.
42+ * @return a dense vector of eigenvalues in descending order and a dense matrix of eigenvectors
43+ * (columns of the matrix). The number of computed eigenvalues might be smaller than k.
44+ */
45+ private [mllib] def symmetricEigs (mul : Vector => Vector , n : Int , k : Int , tol : Double )
46+ : (BDV [Double ], BDM [Double ]) = {
47+ require(n > k, s " Number of required eigenvalues $k must be smaller than matrix dimension $n" )
48+
49+ val arpack = ARPACK .getInstance()
50+
51+ val tolW = new doubleW(tol)
52+ val nev = new intW(k)
53+ val ncv = scala.math.min(2 * k,n)
54+
55+ val bmat = " I"
56+ val which = " LM"
57+
58+ var iparam = new Array [Int ](11 )
59+ iparam(0 ) = 1
60+ iparam(2 ) = 300
61+ iparam(6 ) = 1
62+
63+ var ido = new intW(0 )
64+ var info = new intW(0 )
65+ var resid : Array [Double ] = new Array [Double ](n)
66+ var v = new Array [Double ](n* ncv)
67+ var workd = new Array [Double ](3 * n)
68+ var workl = new Array [Double ](ncv* (ncv+ 8 ))
69+ var ipntr = new Array [Int ](11 )
70+
71+ // first call to ARPACK
72+ arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr, workd,
73+ workl, workl.length, info)
74+
75+ val w = BDV (workd)
76+
77+ while (ido.`val` != 99 ) {
78+ if (ido.`val` != - 1 && ido.`val` != 1 )
79+ throw new IllegalStateException (" ARPACK returns ido = " + ido.`val`)
80+ // multiply working vector with the matrix
81+ val inputOffset = ipntr(0 ) - 1
82+ val outputOffset = ipntr(1 ) - 1
83+ val x = w(inputOffset until inputOffset + n)
84+ val y = w(outputOffset until outputOffset + n)
85+ y := BDV (mul(Vectors .fromBreeze(x)).toArray)
86+ // call ARPACK
87+ arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr,
88+ workd, workl, workl.length, info)
89+ }
90+
91+ if (info.`val` != 0 )
92+ throw new IllegalStateException (" ARPACK returns non-zero info = " + info.`val`)
93+
94+ val d = new Array [Double ](nev.`val`)
95+ val select = new Array [Boolean ](ncv)
96+ val z = java.util.Arrays .copyOfRange(v, 0 , nev.`val` * n)
97+
98+ arpack.dseupd(true , " A" , select, d, z, n, 0.0 , bmat, n, which, nev, tol, resid, ncv, v, n,
99+ iparam, ipntr, workd, workl, workl.length, info)
100+
101+ val computed = iparam(4 )
102+
103+ val s = BDV (d)(0 until computed)
104+ val U = new BDM (n, computed, z)
105+
106+ val sortedEigenValuesWithIndex = s.toArray.zipWithIndex.sortBy(- 1 * _._1).zipWithIndex
107+
108+ val sorteds = BDV (sortedEigenValuesWithIndex.map(_._1._1))
109+ val sortedU = BDM .zeros[Double ](n, computed)
110+
111+ // copy eigenvectors in descending order of eigenvalues
112+ sortedEigenValuesWithIndex.map{
113+ r => {
114+ sortedU(:: , r._2) := U (:: , r._1._2)
115+ }
116+ }
117+
118+ (sorteds, sortedU)
119+ }
120+ }
0 commit comments