|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.ml.classification; |
| 19 | + |
| 20 | +import scala.Tuple2; |
| 21 | + |
| 22 | +import java.io.Serializable; |
| 23 | +import java.util.ArrayList; |
| 24 | +import java.util.List; |
| 25 | + |
| 26 | +import org.junit.After; |
| 27 | +import org.junit.Before; |
| 28 | +import org.junit.Test; |
| 29 | + |
| 30 | +import org.apache.spark.api.java.JavaRDD; |
| 31 | +import org.apache.spark.api.java.JavaSparkContext; |
| 32 | +import org.apache.spark.api.java.function.Function; |
| 33 | +import org.apache.spark.ml.LabeledPoint; |
| 34 | +import org.apache.spark.ml.regression.LinearRegression; |
| 35 | +import org.apache.spark.ml.regression.LinearRegressionModel; |
| 36 | +import static org.apache.spark.mllib.classification.LogisticRegressionSuite |
| 37 | + .generateLogisticInputAsList; |
| 38 | +import org.apache.spark.mllib.linalg.Vector; |
| 39 | +import org.apache.spark.sql.api.java.JavaSQLContext; |
| 40 | +import org.apache.spark.sql.api.java.JavaSchemaRDD; |
| 41 | +import org.apache.spark.sql.api.java.Row; |
| 42 | + |
| 43 | + |
| 44 | +public class JavaLinearRegressionSuite implements Serializable { |
| 45 | + |
| 46 | + private transient JavaSparkContext jsc; |
| 47 | + private transient JavaSQLContext jsql; |
| 48 | + private transient JavaSchemaRDD dataset; |
| 49 | + private transient JavaRDD<LabeledPoint> datasetRDD; |
| 50 | + private transient JavaRDD<Vector> featuresRDD; |
| 51 | + private double eps = 1e-5; |
| 52 | + |
| 53 | + @Before |
| 54 | + public void setUp() { |
| 55 | + jsc = new JavaSparkContext("local", "JavaLinearRegressionSuite"); |
| 56 | + jsql = new JavaSQLContext(jsc); |
| 57 | + List<LabeledPoint> points = new ArrayList<LabeledPoint>(); |
| 58 | + for (org.apache.spark.mllib.regression.LabeledPoint lp: |
| 59 | + generateLogisticInputAsList(1.0, 1.0, 100, 42)) { |
| 60 | + points.add(new LabeledPoint(lp.label(), lp.features())); |
| 61 | + } |
| 62 | + datasetRDD = jsc.parallelize(points, 2); |
| 63 | + featuresRDD = datasetRDD.map(new Function<LabeledPoint, Vector>() { |
| 64 | + @Override public Vector call(LabeledPoint lp) { return lp.features(); } |
| 65 | + }); |
| 66 | + dataset = jsql.applySchema(datasetRDD, LabeledPoint.class); |
| 67 | + dataset.registerTempTable("dataset"); |
| 68 | + } |
| 69 | + |
| 70 | + @After |
| 71 | + public void tearDown() { |
| 72 | + jsc.stop(); |
| 73 | + jsc = null; |
| 74 | + } |
| 75 | + |
| 76 | + @Test |
| 77 | + public void linearRegressionDefaultParams() { |
| 78 | + LinearRegression lr = new LinearRegression(); |
| 79 | + assert(lr.getLabelCol().equals("label")); |
| 80 | + LinearRegressionModel model = lr.fit(dataset); |
| 81 | + model.transform(dataset).registerTempTable("prediction"); |
| 82 | + JavaSchemaRDD predictions = jsql.sql("SELECT label, prediction FROM prediction"); |
| 83 | + predictions.collect(); |
| 84 | + // Check defaults |
| 85 | + assert(model.getFeaturesCol().equals("features")); |
| 86 | + assert(model.getPredictionCol().equals("prediction")); |
| 87 | + } |
| 88 | + |
| 89 | + @Test |
| 90 | + public void linearRegressionWithSetters() { |
| 91 | + // Set params, train, and check as many params as we can. |
| 92 | + LinearRegression lr = new LinearRegression() |
| 93 | + .setMaxIter(10) |
| 94 | + .setRegParam(1.0); |
| 95 | + LinearRegressionModel model = lr.fit(dataset); |
| 96 | + assert(model.fittingParamMap().get(lr.maxIter()).get() == 10); |
| 97 | + assert(model.fittingParamMap().get(lr.regParam()).get() == 1.0); |
| 98 | + |
| 99 | + // Call fit() with new params, and check as many params as we can. |
| 100 | + LinearRegressionModel model2 = |
| 101 | + lr.fit(dataset, lr.maxIter().w(5), lr.regParam().w(0.1), lr.predictionCol().w("thePred")); |
| 102 | + assert(model2.fittingParamMap().get(lr.maxIter()).get() == 5); |
| 103 | + assert(model2.fittingParamMap().get(lr.regParam()).get() == 0.1); |
| 104 | + assert(model2.getPredictionCol().equals("thePred")); |
| 105 | + } |
| 106 | + |
| 107 | + @Test |
| 108 | + public void linearRegressionPredictorClassifierMethods() { |
| 109 | + LinearRegression lr = new LinearRegression(); |
| 110 | + |
| 111 | + // fit() vs. train() |
| 112 | + LinearRegressionModel model1 = lr.fit(dataset); |
| 113 | + LinearRegressionModel model2 = lr.train(datasetRDD); |
| 114 | + assert(model1.intercept() == model2.intercept()); |
| 115 | + assert(model1.weights().equals(model2.weights())); |
| 116 | + |
| 117 | + // transform() vs. predict() |
| 118 | + model1.transform(dataset).registerTempTable("transformed"); |
| 119 | + JavaSchemaRDD trans = jsql.sql("SELECT prediction FROM transformed"); |
| 120 | + JavaRDD<Double> preds = model1.predict(featuresRDD); |
| 121 | + for (Tuple2<Row, Double> trans_pred: trans.zip(preds).collect()) { |
| 122 | + double t = trans_pred._1().getDouble(0); |
| 123 | + double p = trans_pred._2(); |
| 124 | + assert(t == p); |
| 125 | + } |
| 126 | + } |
| 127 | +} |
0 commit comments